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Reference model based data-driven control

Given data from the system P , design K such that the resulting closed-loop is as close
as possible to the reference model M

Reference model

System

Main techniques:

▶ Iterative Feedback Tuning (IFT)

▶ Correlation-based Tuning (CbT)

▶ Virtual Reference Feedback Tuning (VRFT)

▶ Loewner Data-Driven Control (L-DDC)
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Overview of these methods - CbT and IFT

min
θ

∥∥∥∥ PK(θ)

1 + PK(θ)
−M

∥∥∥∥2
2

Reference model

System

CbT

ε(s) =

(
M − PK(θ)

1 + PK(θ)

)
r(s)+

1

1 + PK(θ)
w(s)

IFT

∂ε

∂θ
=

1

K(θ)

∂K

∂θ

(
PK(θ)

1 + PK(θ)
(r − y(θ))

)

Iterative correlation-based controller tuning, Karimi et al. (2004).

Iterative feedback tuning: theory and applications, Hjalmarsson et al. (1998).
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Overview of these methods - VRFT and L-DDC

VRFT

min
θ

∥∥∥∥ PK(θ)

1 + PK(θ)
−M

∥∥∥∥2
2

→ min
θ

∥u−K(θ)r⋆∥22

Reference model

System
Virtual reference

L-DDC

PK⋆

1 + PK⋆
= M → K(ıωi) = K⋆(ıωi)

Reference model

Virtual reference feedback tuning: a direct method for the design of feedback controllers, Campi et al. (2002).

Interpolation-based irrational model control design and stability analysis, Poussot-Vassal, Kergus, Vuillemin (2022).
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Discussion
▶ These approaches consist in approximating the ideal controller K⋆

PK⋆

1 + PK⋆
= M

▶ There are underlying assumptions that
▶ The ideal controller should be in the controller
▶ The ideal controller gives internal stability

▶ Choose wisely the reference model!

▶ All the presented methods (CbT, IFT, VRFT, L-DDC) are strongly linked to
system identification

So why not go with models?

▶ Overcoming complexity (high dimension, non-linearities, uncertainty)

Data-Driven Control: Part Two of Two: Hot Take: Why not go with Models?, F. Dörfler, IEEE Control
Systems Magazine, 2023
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Application to infinite dimensional systems

▶ Model Order Reduction is essential

▶ and it can also be used for
data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969

2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.

6/17



Application to infinite dimensional systems

▶ Model Order Reduction is essential

▶ and it can also be used for
data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.

3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.

6/17



Application to infinite dimensional systems

▶ Model Order Reduction is essential

▶ and it can also be used for
data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.

3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.

6/17



Application to infinite dimensional systems

▶ Model Order Reduction is essential

▶ and it can also be used for
data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.

3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.

6/17



Application to infinite dimensional systems

▶ Model Order Reduction is essential

▶ and it can also be used for
data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.

6/17



Case study: the continuous crystallizer

▶ Goal: stabilize the plant around css = 4.09mol/L

▶ Unstable system and sustained oscillations

▶ Linearization of the PDEs around css

P (s) =
∆c(s)

∆cf (s)
=

p12(s)

p13(s) + q12(s)e−skf + r12(s)e−skp

→ Frequency-domain data easily accessible
N = 500 frequencies, logspaced between 10−3 and 1 rad.s−1

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in the Applied Sciences, 2016.

2. H∞-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H∞-control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and Nonlinear Control, 2018.
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L-DDC Step 1: Building a reference model{
yT
ziP(zi) = 0

ypj
P(pj) = ∞ ⇒

{
yzi

TM(zi) = 0
M(pj)ypj

= ypj

Is the system stable or unstable? non-minimum phase or not?

P(ıω) = Ps(ıω) + Pas(ıω)
L2 = H2 ⊕ H⊥

2
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Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad, International Journal of Control, 2001.

Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Transactions on
Microwave Theory and Techniques, 2018.
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yT
ziP(zi) = 0

ypj
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{
yzi
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Principal Hankel Component analysis on Pas
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9/17



L-DDC Step 1: Building a reference model{
yT
ziP(zi) = 0

ypj
P(pj) = ∞ ⇒

{
yzi

TM(zi) = 0
M(pj)ypj

= ypj

Where are the system’s instabilities?

P(ıω) = Ps(ıω) + Pas(ıω)
L2 = H2 ⊕ H⊥

2

Principal Hankel Component analysis on Pas

0 10 20 30 40 50

-16

-14

-12

-10

-8

-6

-4

-2

0

▶ Estimated RHP poles :
1.07× 10−4 ± 0.852× 10−2ȷ

▶ RHP poles (direct search):
0.99× 10−4 ± 0.89× 10−2ȷ

Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave Symposium, 2018.
9/17



L-DDC Step 1: Building a reference model{
yT
ziP(zi) = 0

ypj
P(pj) = ∞ ⇒

{
yzi

TM(zi) = 0
M(pj)ypj

= ypj

Where are the system’s instabilities?

P(ıω) = Ps(ıω) + Pas(ıω)
L2 = H2 ⊕ H⊥

2

Principal Hankel Component analysis on Pas

0 10 20 30 40 50

-16

-14

-12

-10

-8

-6

-4

-2

0

▶ Estimated RHP poles :
1.07× 10−4 ± 0.852× 10−2ȷ

▶ RHP poles (direct search):
0.99× 10−4 ± 0.89× 10−2ȷ

Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave Symposium, 2018.
9/17



L-DDC Step 1: Building a reference model

{
yT
ziP(zi) = 0

ypj
P(pj) = ∞ ⇒

{
yzi

TM(zi) = 0
M(pj)ypj

= ypj

How to choose the reference model accordingly?

Minit(s) =
1

1 + τs
, τ = 1s

M = 1− (1−Minit)Bp

Bp(s) =

np∏
j=1

s− pj
s+ pj

∀j = 1 . . . np, Bp(pj) = 0

∀ω, |Bp(ȷω)| = 1
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Interlude: the Loewner framework
Find g such that

{
g(λj) = wj , j = 1, . . . , k
g(µi) = vi, i = 1, . . . , q

Lagrangian form

g(s) =

∑k1
j=1

cjwj

s−λj∑k1
j1=1

cj
1s−λj

Loewner matrix

L ∈ Cq×k

(L)i,j =
vi −wj

µi − λj

Null space

span (c) = N (L)

c =


c1
c2
...
ck1

 ∈ Ck1

A tutorial introduction to the Loewner framework for model reduction, Antoulas et al. (2017).
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Interlude: the Loewner framework{
Eẋ=Ax+Bu
y=Cx

H(s) = C(sE−A)−1B

Objective: Find
(
Ê, Â, B̂, Ĉ

)
such that for a set of interpolation

points {sk}
∀i, Ĥ(λi)ri = wi

∀j, ljĤ(µj) = vj

{
−L ˙̃x=−Lsx̃+Vu

ỹ=Wx̃

▶ L, Ls, V and W are data matrices

▶ Model order reduction based on SVD of the pencil (L,Ls)

(L)i,j =
viri − ljwj

µi − λj
(Ls)i,j =

µiviri − λjljwj

µi − λj

▶ Factorization in terms of the tangential generalized
controllability R and observability O matrices:

L = −OER Ls = −OAR V = CR W = OB

AR+BR = ERΛ OA+ LC = MOE

A tutorial introduction to the Loewner framework for model reduction, A.C. Antoulas, S Lefteriu, and A C Ionita, in Model Reduction and
Approximation : Theory and Algorithms, 2017

12/17



Interlude: the Loewner framework{
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LDDC Step 2: Controller identification and reduction
Objective: obtain a rational model K = (E,A,B,C,D) such that:

∀i = 1 . . . N,K(ıωi) = K⋆(ıωi) =
M(ȷωi)

P (ȷωi)(1−M(ȷωi))
.
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10-15

10-10
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100

Figure: SVD of L.
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Figure: Obtained controllers.
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LDDC Step 3: Closed-loop stability analysis

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable ∆ = K −K⋆ such that ∥∆∥∞ ≤ β if
and only if ∥(1−M)P∥∞ < 1

β

→ Limiting the controller modelling error allows to ensure closed-loop internal stability!

Data-driven controller validation, Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009.
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Alternative closed-loop stability analysis
H(ȷωi) =

P (ȷωi)Kr(ȷωi)

1 + P (ȷωi)Kr(ȷωi)
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1. Loewner interpolation: Ĥ(ȷωi) = H(ȷωi)

2. Stable projection on RH∞:
Ĥs = arg min

H∈S+n,ni,no

∥H − Ĥ∥∞

3. Stability index S = ∥Ĥs − Ĥ∥∞

S = 4.3511 · 10−6

Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Transactions on
Microwave Theory and Techniques, 2018

Interpolation-based infinite dimensional model control design and stability analysis, Poussot-Vassal, Kergus, Vuillemin, chapter to appear.
On the closest stable descriptor system in the respective spaces RH2 and RH∞, Köhler, Linear Algebra and its Applications, 2014.
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15/17



Alternative closed-loop stability analysis
H(ȷωi) =

P (ȷωi)Kr(ȷωi)

1 + P (ȷωi)Kr(ȷωi)

1st option

10-2 10-1 100
-150

-100

-50

0

2nd option

1. Loewner interpolation: Ĥ(ȷωi) = H(ȷωi)
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S = 4.3511 · 10−6

Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Transactions on
Microwave Theory and Techniques, 2018
Interpolation-based infinite dimensional model control design and stability analysis, Poussot-Vassal, Kergus, Vuillemin, chapter to appear.
On the closest stable descriptor system in the respective spaces RH2 and RH∞, Köhler, Linear Algebra and its Applications, 2014.15/17
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Results
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Figure: Closed-loop transfer functions.
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Figure: Time-domain simulation.

⇒ Impact of the complexity-accuracy trade-off

→ Impact of the reference model (comparison with a robust PID)

Structured H control of infinite-dimensional systems, Apkarian and Noll, 2018.
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Conclusion

The Loewner framework can be used as a central tool for
the control of infinite dimensional transfer functions.

Extension to other types of systems?

Model-based design L-DDC
Method more steps direct

Controller structure fixed order/poles linear
Specifications flexible not flexible

(robust) (only stability)
Stability guarantees for Pr conservative

or not embedded
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