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Reference model based data-driven control
Given data from the system P, design K such that the resulting closed-loop is as close
as possible to the reference model M

Main techniques:
_____ Reference model M~ > Iterative Feedback Tuning (IFT)
» Correlation-based Tuning (CbT)
» Virtual Reference Feedback Tuning (VRFT)
» Loewner Data-Driven Control (L-DDC)
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Overview of these methods - CbT a‘r‘\\‘l\ IFT

e S e ———

System 2
min PE(®) — ’
9 |1+ PK(9) S
Reference model
CbT

PK(6) 1
8(8) = < — HP—I{(O)) 7”(8)+1+P—},{(0)’w(8)

Iterative correlation-based controller tuning, Karimi et al. (2004).
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Overview of these methods - CbT anleT

________________________________

System
|l PK(9) 2
W TrerE M, =0 ] S
Reference model
CbT IFT
B PK(0) 1 de 1 0K [ PK(9)
els) = ( T1y PK(&)) O T rRm YY) | 0 T ®@) o0 (1 —Pr@ " y(a)))

Iterative correlation-based controller tuning, Karimi et al. (2004).
Iterative feedback tuning: theory and applications, Hjalmarsson et al. (1998).
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Overview of these methods - VRFT andL-DDC

VRFT
| PK(9) 2 _ 5
allelel N — K(0)r*
min T+ PK() M , min ||l @)r*5

Virtual reference feedback tuning: a direct method for the design of feedback controllers, Campi et al. (2002).
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Overview of these methods - VRFT andL-DDC

VRFT
|| PK(6) ? . o2
m@ln HP—I{(G) - M , — meln ||u — K(a)’l" ||2
L-DDC
PK*
— =M K(w;) = K* ;
T PE~ — K(w;) (ww;)

Reference model M

_________________________________

[}

1

]
Virtual reference!
Mr*=y |

1

_________________________________

________________________________

- K* P(iw;)

________________________________

Virtual reference feedback tuning: a direct method for the design of feedback controllers, Campi et al. (2002).
Interpolation-based irrational model control design and stability analysis, Poussot-Vassal, Kergus, Vuillemin (2022).
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Discussion N\
» These approaches consist in approximating the ideal controller K*
PK*
1+ PK*

Data-Driven Control: Part Two of Two: Hot Take: Why not go with Models?, F. Dérfler, IEEE Control

Systems Magazine, 2023
o 3% Laplace
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Discussion
» These approaches consist in approximating the ideal controller K*

PK*
1+ PK*

» There are underlying assumptions that

» The ideal controller should be in the controller
» The ideal controller gives internal stability

» Choose wisely the reference model!

» All the presented methods (CbT, IFT, VRFT, L-DDC) are strongly linked to
system identification

So why not go with models?

» Overcoming complexity (high dimension, non-linearities, uncertainty)

Data-Driven Control: Part Two of Two: Hot Take: Why not go with Models?, F. Dérfler, IEEE Control

Systems Magazine, 2023
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Application to infinite dimensional systems N

A ﬂw

(ngh order system P)

|UseP|

.hp.n,c

Y 1 1

' High-order K

1 Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
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Application to infinite dimensional systems

=B

.
(High-order system P) I_’wq,h e

| Use P | (Use reduced-model P,)

A 4 1

\4
High-order K Low-order K,

1 Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2 Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
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Application to infinite dimensional systems

B+ ™ ]g,h,,n,c
0 - e
\ 2%
(High-order system P) I‘\q'h e
LTI LT T TE TRt s . » Model Order Reduction is essential

(Use P) [Use reduced-model P,]

A 4 . 1

v
' High-order K ' Low-order K,

Model-based control

1 Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969
2 Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
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Application to infinite dimensional systems

: » and it can also be used for
| Use P | [Use reduced-model P,] (Use data] : data-driven control.
A 4 \ 4 A 4 :

' High-order K ' Low-order K, ( Low-order K,

Model-based control Data-driven control

1 Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969

Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.

From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus, Olivi, Poussot-Vassal, Demourant,
IEEE Control Systems Letters, 2019.
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Case study: the continuous crystallizkéi‘f\[

q,h;,n,c

> Goal: stabilize the plant around ¢, = 4.09mol /L

q,h,,n,c

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in the Applied Sciences, 2016.
2. Hoo-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H oo -control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and Nonlinear Control, 2018.
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> Goal: stabilize the plant around ¢, = 4.09mol /L
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Case study: the continuous crystallizer

> Goal: stabilize the plant around ¢, = 4.09mol /L
» Unstable system and sustained oscillations

» Linearization of the PDEs around css

q,h,,n,c

5 = Ac(s) _ p12(5)
Acs(s)  pis(s) + qua(s)e™*F7 +ria(s)e kv

P(

— Frequency-domain data easily accessible

N = 500 frequencies, logspaced between 1072 and 1 rad.s™!

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in the Applied Sciences, 2016.
2. Hoo-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H oo -control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and Nonlinear Control, 2018.
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L-DDC Step 1: Building a reference model \

Yo, Plps) = o0 M(p;)yp, = Y,

Is the system stable or unstable? non-minimum phase or not?

Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad, International Journal of Control, 2001.
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YLP(z) =0 ¥z TM(z:) SO R
ijP(pj) =00 M(pj)ij = Yp;
Is the system stable or unstable? non-minimum phase or not?
Plw) = Pslw) 4+ Pas(w)
Lo = Ha ® Hy

&
3
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L-DDC Step 1: Building a reference model

y:P(z) =0 = ¥ TM(z) RN\ o
Yo, P(py) = o0 M(p,)ys, = Y, —~
Is the system stable or unstable? non-minimum phase or not?

P(/;«,‘) = P‘,(%u') + Pas(zw)

P (w) = P;l(zw) + Pgsl(zw)

L, = H, @& HE

60 T T T

o o
s =
o- > i
g 3
El 3 ;
5 5-20
g g
= =
-40

nt's inverse
ble projection

102

107"
Frequency (Hz)

10°

-80

|—Antistable projection

10?2

10"
Frequency (Hz)

Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad, International Journal of Control, 2001.

8/17 Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Tra
/ Microwave Theory and Techniques, 2018.
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L-DDC Step 1: Building a reference model
v TM(z) =0 |-

{ yZTiP(zi) =0
¥p,; P(pj) = 00

=

{

M(pj)ypj = Yy

Where are the system’s instabilities?

Plw) = Pw) + Poyw)
Ly = Ha S Hy

Principal Hankel Component analysis on P,

10g10(0i /O maz)

0 10 20 30 40 50
i-th singular value
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L-DDC Step 1: Building a reference model " =
A N (P 0
ijP(pj) =00 M(pj)ij = Yp;
Where are the system’s instabilities?

Plw) = Pylw) + Pgs(w)
L‘g - H‘Z &) 7-[2L

Principal Hankel Component analysis on P,

» Estimated RHP poles :
1.07 x 107* £ 0.852 x 1072

» RHP poles (direct search):
0.99 x 1074 + 0.89 x 1025

10910(0: /T maz)

0 10 20 30 40 50

o/17 i-th singular value N >§§ I I ce
Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave Symposium,’{OlS?sQ:
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L-DDC Step 1: Building a reference model

{ YZ;P(ZZ') =0
yp]P(pj) =

{ YZ,,TM(ZZ') =0
M(p;)yp, = Yp,

How to choose the reference model accordingly?

Minit(s) =

| M =1—(1-Miyu)B, |

np s —p; Vj=1...np, Bp(pj)zo
By(s) = H —s—l—p‘
j=1 J Yw, |Bp(yw)| =1
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Interlude: the Loewner framework

Find g such that ;
& { glu) = wvi,i=1,...

Lagrangian form

k CiWj
ST, 25
g =

Zjlzl IS—)\]'

A tutorial introduction to the Loewner framework for model reduction, Antoulas et al. (2017).
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Interlude: the Loewner framework

Find g such that ;
& { glu) = wvi,i=1,...

Lagrangian form

S, 5
—1 5=X,
g(s) = Zkl—c]]
g1=1 Ts=x; ) span (¢) = N (L)
Loewner matrix 1
()
L e C9%k c=| " |ech
V; — Wj ’
L)y = Ck
i = Aj ) '

A tutorial introduction to the Loewner framework for model reduction, Antoulas et al. (2017).
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Interlude: the Loewner frameworl NS
Objective: Find (E,A,B,C such that for/ja\s‘et ofinterpo‘lgti:q‘n;

{ Exiéx +Bu points {si}
y=x Vi, H()\l)rz = W;
H(S) = C(SE - A)ilB Vj, IJI:I(,U,J) = Vj
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Interlude: the Loewner frameworl N\
Objective: Find (E,A, B, C) such that for a set of interpolation

{ Exiéx + Bu points {si}
y=Lx Vi, H()\i)l‘i = W;
H(s) = C(sE—A)"'B Vi, LH(u,) = v;

> I, L, Vand W are data matrices
> Model order reduction based on SVD of the pencil (L, L;)

virs — Low. wivit; — A Liw;
L), » — it NI L), = HiYiti jLiWj
( )w i — X ( S)m i — A

—Lx=-L,X + Vu
y=Wx

. 3% Laplace




Interlude: the Loewner frameworl
Objective: Find (E,A, B, C) such that for a set of interpolation

{ Exiéx + Bu points {si}
y=Lx Vi, H()\i)ri = W;
H(s) = C(sE—-A)"'B Vi, LH(uj) = v,

> I, L, Vand W are data matrices

> Model order reduction based on SVD of the pencil (L, L;)

vir; — Liw; Vil — A\jLiw;
(IL)LJ' = 7 (E‘s)ivj = ahii Sh—
% X Hi = A Wi = Aj
—Lx=-L,x+ Vu
y=Wx > Factorization in terms of the tangential generalized

controllability R and observability O matrices:

L=-OER L;=-0OAR V=CR W=0B

1217 AR+BR=ERA  OA+LC =0 aplace




LDDC Step 2: Controller identification and reductlon
Objective: obtain a rational model K = (E, A, B, C, D) such that:

M (ywi)

Vi=1...N,K(uw;) = K" (uw;) = P(gwi)(1 — M (gu;))-
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LDDC Step 2: Controller identification and reduction
Objective: obtain a rational model K = (E, A, B, C, D) such that: ‘ :

- * M (Jwi)
Vi=1...N,K(w;) = K*(w;) = :
P(gwi)(1 — M (gw;))
10° - -
—Normalized SVD of the Loewner matrix| 90 Kis
—McMillan order r = 182 - K,
80 K
< - K
=
: g \,
: 2 A
E £ 60 P
Z E RN
S o IFa
5 = 50 i e
2 0 '
4 \
10715 . \
30 Ve » =TT
100 200 300 400 500 10° 10 107 10°
i-th sinular value

Frequency (rad/s)

Figure: SVD of L. Figure: Obtained controllers.

Pss-1 Laplace

13/17




LDDC Step 3: Closed-loop

Reference model M

_________________________________

é ? K* P(iw;) ;

_________________________________
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LDDC Step 3: Closed-loop stability analysis‘\’f N

Resulting closed-loop

---------------------------------

? K, [ Pliw;)

_________________________________
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LDDC Step 3: Closed-loop stability analysis

Controller modelling error A

Resulting closed-loop

i
i
!
T
1
\
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A

Reference model M

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable A = K — K™ such that ||A||ec < 8 if
and only if [[(1 = M)P|lo < %

— Limiting the controller modelling error allows to ensure closed-loop internal stability!

Data-driven controller validation, Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009. )ﬁ Laplace




LDDC Step 3: Closed-loop stability analysis\ \

2500 Controller modelling error A

e-Controller modelling error|

|—Estimated limit 5! /’ \
2000 : - *
! r
\
N
1500

—~O—{x

500

1
i
i
1

System

Controller modelling error ||[K — K*||.

o
’

" e 2 the cotroller K Reference model M

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable A = K — K™ such that ||A||ec < 8 if
and only if [[(1 = M)P|lo < %

— Limiting the controller modelling error allows to ensure closed-loop internal stability!

Data-driven controller validation, Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009.
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Alternative closed-loop stability analysis
H(jw;) = P(jwi) K, (ywi)
Jwi 1+P<]wi)Kr(]wi)

1st option

0 ———————»*«/‘\\‘\ ]
= '
T 50 .
) —Resulting closed-loop using K 3
"S - -Stable projection |
'E \—Antistable projection )
5 i
= '
= -100 |
-150 :

102 107
Frequency (Hz)

Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Transactions on
Microwave Theory and Techniques, 2018

Pss-1 Laplace

15/17




15/17

Alternative closed-loop stability anaIYSis“
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1st option

2nd option
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= -50f :
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Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard, Baratchart, IEEE Transactions on
Microwave Theory and Techniques, 2018
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Alternative closed-loop stability analysis

 P(w) K (i)
H(jw;) = 1+ P(jw;) Ky (yw;)

1st option

2nd option
0“*’/\\‘\ 1 1. Loewner interpolation: H (jw;) = H (jw;)
; 2. Stable projection on RH
g s i H, = arg. min ||H — H||O<J
) —Resulting closed-loop using K 1 HeSn,nz mo
'S - -Stable projection |
'E \—Antistable projection )
2
= -100F :
-150 ‘

102 107
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1st option
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: 2. Stable projection on RH
. v H, = arg min ||H — H||O<J
Tol —Resulting closed-loop using K> l“ HESn,nz no
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= -100F !
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— Impact of the reference model (comparison with a robust PID)
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Conclusion

’ﬂ The Loewner framework can be used as a central tool for

9 Y ot the control of infinite dimensional transfer functions.

(Use P] (Use reduced-model Pr] P (Use data)
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[High—order K] [Low—order K,) Low-order K, | :
Model-based control Data-driven control
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ﬂ The Loewner framework can be used as a central tool for

e the control of infinite dimensional transfer functions.

(Use P] (Use reduced-model Pr] [Use data) Extension to other types of systems?

A\ 4

[High—order K] [Low—order K,) Low-order K,

Model-based control Data-driven control

Model-based design L-DDC
Method more steps direct
Controller structure | fixed order/poles linear

Specifications flexible not flexible

(robust) (only stability)
Stability guarantees for P, conservative
or not embedded
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