Safely Learning Controlled Stochastic Dynamics

Workshop on data-driven control and analysis of dynamical systems - ENSEEIHT - 30/09/2025

Riccardo Bonalli

Laboratoire des Signaux et Systèmes CNRS and Université Paris-Saclay

Contents

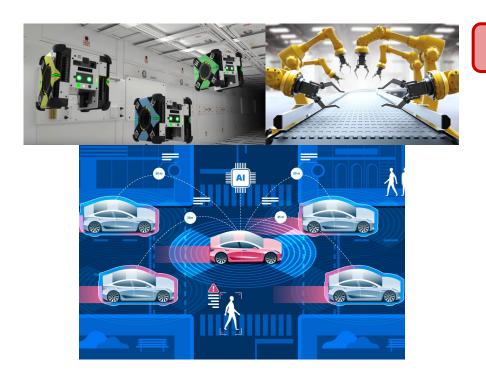
- 1. Some challenges in controlling autonomous systems
- 2. Safely learning controlled SDE
 - a. Problem setting
 - b. Assumptions and algorithm
 - c. Theoretical guarantees
 - d. Numerical example
- 3. Conclusion

Contents

- 1. Some challenges in controlling autonomous systems
- 2. Safely learning controlled SDE
 - a. Problem setting
 - b. Assumptions and algorithm
 - c. Theoretical guarantees
 - d. Numerical example
- 3. Conclusion

Challenges in controlling autonomous systems

Challenges in controlling autonomous systems



Though unwanted events might happen...

Challenges in controlling autonomous systems

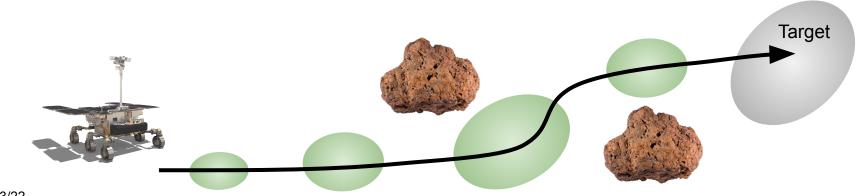
$$dX(t) = b(X(t), u(t, X(t)))dt$$

$$dX(t) = b(X(t), u(t, X(t)))dt$$

$$g(X(t)) \geq 0, \; t \in [0,T] \quad ext{and} \quad g_T(X(T)) \geq 0$$

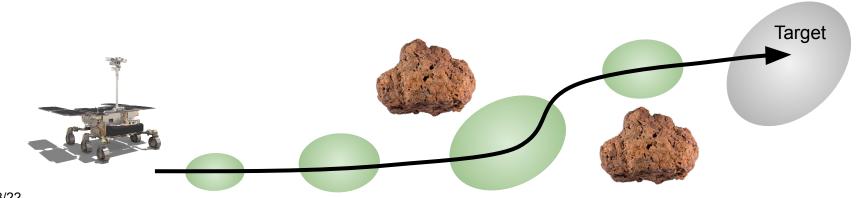
$$dX(t) = b(X(t), u(t, X(t)))dt$$

$$g(X(t)) \geq 0, \; t \in [0,T] \quad ext{and} \quad g_T(X(T)) \geq 0$$



$$dX(t) = b(X(t), u(t, X(t)))dt + a(X(t), u(t, X(t)))dW(t)$$

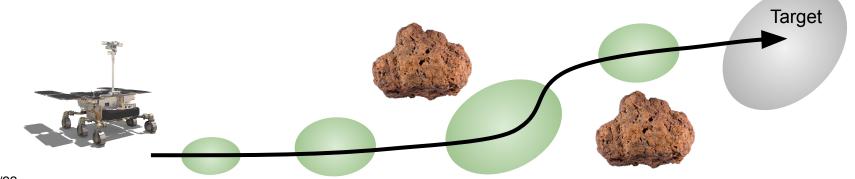
$$g(X(t)) \geq 0, \; t \in [0,T] \quad ext{and} \quad g_T(X(T)) \geq 0$$



$$dX(t) = b(X(t), u(t, X(t)))dt + a(X(t), u(t, X(t)))dW(t)$$

$$g(X(t)) \geq 0, \; t \in [0,T] \quad ext{and} \quad g_T(X(T)) \geq 0$$

$$\inf_{t \in [0,T]} \mathbb{P}(g(X(t)) \geq 0) \geq 1 - arepsilon \quad \mathbb{P}(g(X_T(T)) \geq 0) \geq 1 - arepsilon$$



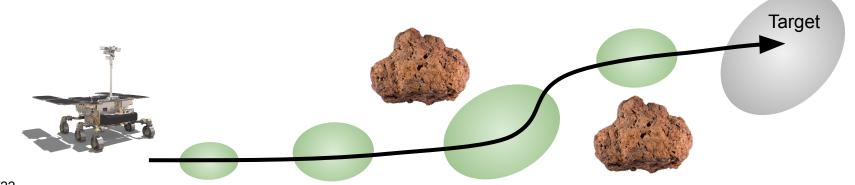
$$dX(t) = b(X(t), u(t, X(t)))dt + a(X(t), u(t, X(t)))dW(t)$$

$$g(X(t)) \geq 0, \; t \in [0,T] \quad ext{and} \quad g_T(X(T)) \geq 0$$

Problem

Under unknown drifts and diffusions, how to learn the space of safe controls with guarantees?

$$\inf_{t\in[0,T]}\mathbb{P}(g(X(t))\geq 0)\geq 1-arepsilon \quad \mathbb{P}(g(X_T(T))\geq 0)\geq 1-arepsilon$$



Here are a few comments

- Much of the literature focuses on "discrete", i.e., discrete-time or -state systems
- Bayesian methods provide some of the strongest high-confidence safety guarantees

Here are a few comments

- Much of the literature focuses on "discrete", i.e., discrete-time or -state systems
- Bayesian methods provide some of the strongest high-confidence safety guarantees
- For "continuous" systems, offline learning and online adaptation for nonlinear systems
- Lyapunov theory offers formal certification but often requires full dynamics knowledge

Here are a few comments

- Much of the literature focuses on "discrete", i.e., discrete-time or -state systems
- Bayesian methods provide some of the strongest high-confidence safety guarantees
- For "continuous" systems, offline learning and online adaptation for nonlinear systems
- Lyapunov theory offers formal certification but often requires full dynamics knowledge
- Weak point: prior models of the system dynamics or safety functions are required

Here are a few comments

- Much of the literature focuses on "discrete", i.e., discrete-time or -state systems
- Bayesian methods provide some of the strongest high-confidence safety guarantees
- For "continuous" systems, offline learning and online adaptation for nonlinear systems
- Lyapunov theory offers formal certification but often requires full dynamics knowledge
- Weak point: prior models of the system dynamics or safety functions are required

Presentation based on a collaboration with L. Brogat-Motte and A. Rudi, work recently <u>accepted at NeurIPS 2025</u>

Contents

- 1. Some challenges in controlling autonomous systems
- 2. Safely learning controlled SDE
 - a. Problem setting
 - b. Assumptions and algorithm
 - c. Theoretical guarantees
 - d. Numerical example
- 3. Conclusion

Control parametrization

$$u_{\theta}: [0, T_{\max}] \times \mathbb{R}^n \to \mathbb{R}^d \quad \theta \in D \subset \mathbb{R}^m$$
, where D is a compact subset of \mathbb{R}^m

Control parametrization

$$u_{\theta}: [0, T_{\max}] \times \mathbb{R}^n \to \mathbb{R}^d \quad \theta \in D \subset \mathbb{R}^m$$
, where D is a compact subset of \mathbb{R}^m

Safety functions

$$X_u$$
 solution to $dX(t) = b(X(t), u(t, X(t))) dt + a(X(t), u(t, X(t))) dW(t)$

$$X_u(0) \sim p_0$$
. Define $s(\theta,t) riangleq \mathbb{P}\left(g(X_{u_{\theta}}(t)) \geq 0
ight)$ and $s^{\infty}(\theta,T) riangleq \inf_{t \in [0,T]} s(\theta,t)$

Control parametrization

$$u_{\theta}: [0, T_{\max}] \times \mathbb{R}^n \to \mathbb{R}^d \quad \theta \in D \subset \mathbb{R}^m$$
, where D is a compact subset of \mathbb{R}^m

Safety functions

$$X_u$$
 solution to $\mathrm{d}X(t) = b(X(t), u(t, X(t))) \, \mathrm{d}t + a(X(t), u(t, X(t))) \, \mathrm{d}W(t)$ $X_u(0) \sim p_0$. Define $s(\theta, t) \triangleq \mathbb{P}\left(g(X_{u_\theta}(t)) \geq 0\right)$ and $s^\infty(\theta, T) \triangleq \inf_{t \in [0, T]} s(\theta, t)$

Learning problem

Collect data
$$(\theta_k, X_{u_{\theta_k}}(w_i^k, t_l))_{k \in \{1, \dots, K\}, \ i \in \{1, \dots, Q\}, \ l \in \{1, \dots, M_k\}}$$
 to "maximally cover" D , while $s^{\infty}(\theta_k, T_k) \geq 1 - \varepsilon$, for each $k \in \llbracket 1, K \rrbracket$ (here $(T_k)_{k=1}^K = (t_{M_k})_{k=1}^K \leq T_{\max}$)

Control parametrization

$$u_{\theta}: [0, T_{\max}] \times \mathbb{R}^n \to \mathbb{R}^d \quad \theta \in D \subset \mathbb{R}^m$$
, where D is a compact subset of \mathbb{R}^m

Safety functions

$$X_u$$
 solution to $\mathrm{d}X(t) = b(X(t), u(t, X(t))) \, \mathrm{d}t + a(X(t), u(t, X(t))) \, \mathrm{d}W(t)$ $X_u(0) \sim p_0$. Define $s(\theta, t) \triangleq \mathbb{P}\left(g(X_{u_\theta}(t)) \geq 0\right)$ and $s^\infty(\theta, T) \triangleq \inf_{t \in [0, T]} s(\theta, t)$

Learning problem

Collect data
$$(\theta_k, X_{u_{\theta_k}}(w_i^k, t_l))_{k \in \{1, \dots, K\}, i \in \{1, \dots, Q\}, l \in \{1, \dots, M_k\}}$$
 to "maximally cover" D , while $s^{\infty}(\theta_k, T_k) \geq 1 - \varepsilon$, for each $k \in \llbracket 1, K \rrbracket$ (here $(T_k)_{k=1}^K = (t_{M_k})_{k=1}^K \leq T_{\max}$)

In short: learning safe controls under constraints for the safety function!

• In practice, one explores by starting wandering around a known safe region (initial distribution)

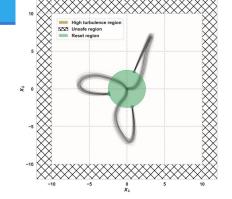
- In practice, one explores by starting wandering around a known safe region (initial distribution)
- To enable "well-posed" learning, i.e., collecting iid samples, we introduce a **reset mechanism**

We let a function $h: \mathbb{R}^n \to \mathbb{R}$ define a region in the state space from which resets (to the initial distribution) are feasible.

- In practice, one explores by starting wandering around a known safe region (initial distribution)
- To enable "well-posed" learning, i.e., collecting iid samples, we introduce a **reset mechanism**

We let a function $h: \mathbb{R}^n \to \mathbb{R}$ define a region in the state space from which resets (to the initial distribution) are feasible. Specifically:

$$h(X_{u_ heta}(t)) \geq 0 \implies egin{cases} \exists u, \ \widehat{T} \geq t: \ \mathbb{P}(X_u|_{X_u(t) = X_{u_ heta}(t)}(\widehat{T}) \in \mathrm{supp} \ p_0) = 1 \end{cases}$$

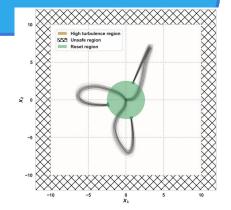


- In practice, one explores by starting wandering around a known safe region (initial distribution)
- To enable "well-posed" learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function $h: \mathbb{R}^n \to \mathbb{R}$ define a region in the state space from which resets (to the initial distribution) are feasible. Specifically:

$$h(X_{u_{ heta}}(t)) \geq 0 \implies egin{cases} \exists u, \ \widehat{T} \geq t: \ \mathbb{P}(X_{u}|_{X_{u}(t)=X_{u_{ heta}}(t)}(\widehat{T}) \in \mathrm{supp} \ p_{0}) = 1 \end{cases}$$

Not that strong in practice: \widehat{T} may be a stopping time!



- In practice, one explores by starting wandering around a known safe region (initial distribution)
- To enable "well-posed" learning, i.e., collecting iid samples, we introduce a reset mechanism

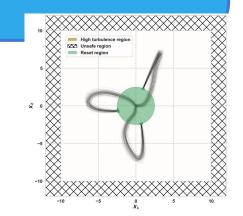
We let a function $h: \mathbb{R}^n \to \mathbb{R}$ define a region in the state space from which resets (to the initial distribution) are feasible. Specifically:

$$h(X_{u_ heta}(t)) \geq 0 \implies egin{cases} \exists u, \ \widehat{T} \geq t: \ \mathbb{P}(X_u|_{X_u(t) = X_{u_ heta}(t)}(\widehat{T}) \in \mathrm{supp} \ p_0) = 1 \end{cases}$$

Not that strong in practice: \widehat{T} may be a stopping time!

• By defining the reset function $r(\theta,t) \triangleq \mathbb{P}\left(h(X_{u_{\theta}}(t)) \geq 0\right)$, we now learn subject to the **safety and reset constraints**

$$\left(r(heta_k, T_k) \geq 1 - \xi
ight) ext{and} \quad s^\infty(heta_k, T_k) \geq 1 - arepsilon, \quad ext{for each } k \in \llbracket 1, K
rbracket$$



- In practice, one explores by starting wandering around a known safe region (initial distribution)
- To enable "well-posed" learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function $h: \mathbb{R}^n \to \mathbb{R}$ define a region in the state space from which resets (to the initial distribution) are feasible. Specifically:

$$h(X_{u_{ heta}}(t)) \geq 0 \implies egin{cases} \exists u, \ \widehat{T} \geq t: \ \mathbb{P}(X_u|_{X_u(t)=X_{u_{ heta}}(t)}(\widehat{T}) \in \operatorname{supp} p_0) = 1 \ & \quad \text{and} \quad \mathbb{P}\left(\inf_{s \in [t,\widehat{T}]} g(X_u(s)) \geq 0\right) \geq 1-arepsilon \quad \text{Might be hard}!!!$$

Not that strong in practice: \widehat{T} may be a stopping time!

• By defining the reset function $r(\theta,t) \triangleq \mathbb{P}\left(h(X_{u_{\theta}}(t)) \geq 0\right)$, we now learn subject to the **safety and reset constraints**

$$r(heta_k, T_k) \geq 1 - \xi$$
 and $s^\infty(heta_k, T_k) \geq 1 - arepsilon,$ for each $k \in \llbracket 1, K
rbracket$

7/22

With that in mind...

Formal (ultimate) goal

For given precisions ε , $\xi > 0$, collect data to best estimate (learn)

$$\Gamma riangleq \left\{ (heta,T) \in D imes [0,T_{ ext{max}}] \; \middle| \; s^{\infty}(heta,T) \geq 1-arepsilon \; \; ext{ and } \; \; r(heta,T) \geq 1-\xi
ight\}.$$

with rates of convergence.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta,t) \ge 1 - \varepsilon$$
 for all $(\theta,t) \in S_0$.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta, t) \ge 1 - \varepsilon$$
 for all $(\theta, t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0,1]$, a non-empty set $R_0 \subset D \times [0,T_{\max}]$ is provided such that

$$r(\theta,t) \ge 1 - \xi$$
 for all $(\theta,t) \in R_0$.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta,t) \ge 1 - \varepsilon$$
 for all $(\theta,t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0,1]$, a non-empty set $R_0 \subset D \times [0,T_{\max}]$ is provided such that

$$r(\theta,t) \ge 1 - \xi$$
 for all $(\theta,t) \in R_0$.

Let denote
$$p:(\theta,t,x)\in D imes [0,T_{\max}] imes \mathbb{R}^n\mapsto p_{\theta}(t,x)$$
 ,

where $p_{\theta}(t,x)$ is the density of the state $X_{u_{\theta}}(t)$ under control u_{θ}

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta,t) \ge 1 - \varepsilon$$
 for all $(\theta,t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0,1]$, a non-empty set $R_0 \subset D \times [0,T_{\max}]$ is provided such that

$$r(\theta, t) \ge 1 - \xi$$
 for all $(\theta, t) \in R_0$.

Let denote
$$p:(\theta,t,x)\in D imes [0,T_{\max}] imes \mathbb{R}^n\mapsto p_{\theta}(t,x)$$
 ,

where $p_{\theta}(t,x)$ is the density of the state $X_{u_{\theta}}(t)$ under control u_{θ}

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev space $H^{\nu}(\mathbb{R}^{n+m+1})$ with $\nu > n/2$, where n and m denote the state and control parameter dimensions, respectively. Moreover, $\sup_{x \in \mathbb{R}^n} \left\| p(\cdot, \cdot, x) \right\|_{H^{\nu}(\mathbb{R}^{m+1})} < +\infty$, $\sup_{(\theta, t) \in D \times [0, T_{\max}]} \|p(\theta, t, \cdot)\|_{H^{\nu}(\mathbb{R}^n)} < \infty$.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta, t) \ge 1 - \varepsilon$$
 for all $(\theta, t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0, 1]$, a non-empty set $R_0 \subset D \times [0, T_{\max}]$ is provided such that

$$r(\theta,t) \ge 1 - \xi$$
 for all $(\theta,t) \in R_0$.

Let denote
$$p:(\theta,t,x)\in D imes [0,T_{\max}] imes \mathbb{R}^n\mapsto p_{\theta}(t,x)$$
 ,

where $p_{\theta}(t,x)$ is the density of the state $X_{u_{\theta}}(t)$ under control u_{θ}

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev space $H^{\nu}(\mathbb{R}^{n+m+1})$ with $\nu > n/2$, where n and m denote the state and control parameter dimensions, respectively. Moreover, $\sup_{x \in \mathbb{R}^n} \left\| p(\cdot, \cdot, x) \right\|_{H^{\nu}(\mathbb{R}^{m+1})} < +\infty$, $\sup_{(\theta, t) \in D \times [0, T_{\max}]} \| p(\theta, t, \cdot) \|_{H^{\nu}(\mathbb{R}^n)} < \infty$.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta, t) \ge 1 - \varepsilon$$
 for all $(\theta, t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0,1]$, a non-empty set $R_0 \subset D \times [0,T_{\max}]$ is provided such that

$$r(\theta,t) \ge 1 - \xi$$
 for all $(\theta,t) \in R_0$.

Hinges upon (local) stochastic controllability

Let denote $p:(\theta,t,x)\in D imes [0,T_{\max}] imes \mathbb{R}^n\mapsto p_{\theta}(t,x)$,

where $p_{\theta}(t,x)$ is the density of the state $X_{u_{\theta}}(t)$ under control u_{θ}

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev space $H^{\nu}(\mathbb{R}^{n+m+1})$ with $\nu > n/2$, where n and m denote the state and control parameter dimensions, respectively. Moreover, $\sup_{x \in \mathbb{R}^n} \left\| p(\cdot, \cdot, x) \right\|_{H^{\nu}(\mathbb{R}^{m+1})} < +\infty$, $\sup_{(\theta, t) \in D \times [0, T_{\max}]} \| p(\theta, t, \cdot) \|_{H^{\nu}(\mathbb{R}^n)} < \infty$.

Assumption (A1) (Initial safe controls). For $\varepsilon \in [0,1]$, a non-empty set $S_0 \subset D \times [0,T_{\max}]$ is provided such that

$$s(\theta, t) \ge 1 - \varepsilon$$
 for all $(\theta, t) \in S_0$.

Assumption (A2) (Initial resetting controls). For $\xi \in [0,1]$, a non-empty set $R_0 \subset D \times [0,T_{\max}]$ is provided such that

$$r(\theta,t) \ge 1 - \xi$$
 for all $(\theta,t) \in R_0$.

Hinges upon (local)

Let denote $p:(\theta,t,x)\in D\times [0,T_{\max}]\times \mathbb{R}^n\mapsto p_{\theta}(t,x)$,

where $p_{\theta}(t,x)$ is the density of the state $X_{u_{\theta}}(t)$ under control u_{θ}

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev space $H^{\nu}(\mathbb{R}^{n+m+1})$ with $\nu > n/2$, where n and m denote the state and control parameter dimensions, respectively. Moreover, $\sup_{x\in\mathbb{R}^n} \|p(\cdot,\cdot,x)\|_{H^{\nu}(\mathbb{R}^{m+1})} < +\infty$,

$$\sup_{(\theta,t)\in D imes [0,T_{\max}]}\|p(\theta,t,\cdot)\|_{H^{
u}(I)}$$

 $\sup_{(\theta,t)\in D imes[0,T_{\max}]}\|p(\theta,t,\cdot)\|_{H^{
u}(t)}$ Model-free settings can be considered as well!

• Initialization (N = 0)

$$\Gamma_0 \triangleq \left\{ (\theta, t, T) \in D \times [0, T_{\text{max}}]^2 \,\middle|\, t \leq T, \ (\theta, t') \in S_0 \text{ for all } t' \in [0, T], \ (\theta, T) \in R_0 \right\}$$

Initialization (N = 0)

$$\Gamma_0 \triangleq \left\{ (\theta, t, T) \in D \times [0, T_{\text{max}}]^2 \,\middle|\, t \leq T, \ (\theta, t') \in S_0 \text{ for all } t' \in [0, T], \ (\theta, T) \in R_0 \right\}$$

Think of it as "observation" time to decrease uncertainty: we may observe the system not exclusively at states from which it is resettable

At iteration N: 5 steps

1. Collect Q iid samples $(X_{u_{\theta_N}}(w_i^N,t_N))_{i\in \llbracket 1,Q
rbracket}$

Showed later why these are safe Note the necessity of resetting...

- At iteration N: 5 steps
 - 1. Collect Q iid samples $(X_{u_{ heta_N}}(w_i^N,t_N))_{i\in \llbracket 1,Q
 rbracket}$

Showed later why these are safe!

Note the necessity of resetting...

2. Build the kernel density estimator $\hat{p}_{\theta_N,t_N}(x) \triangleq \frac{1}{Q} \sum_{i=1}^{Q} \rho_R(x - X_{u_{\theta_N}}(w_i^N,t_N))$ (B. and Rudi FoCM 2025)

- At iteration N: 5 steps
 - 1. Collect Q iid samples $(X_{u_{\theta_N}}(w_i^N,t_N))_{i\in \llbracket 1,Q
 rbracket}$ Note the necessity of resetting...

Build the kernel density estimator $\hat{p}_{\theta_N,t_N}(x) \triangleq \frac{1}{Q} \sum_{i=1}^Q \rho_R(x - X_{u_{\theta_N}}(w_i^N,t_N))$ (B. and Rudi FoCM 2025) and compute safety/reset: $\hat{s}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : g(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$, $\hat{r}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : h(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$

- At iteration N: 5 steps
 - 1. Collect Q iid samples $(X_{u_{\theta_N}}(w_i^N, t_N))_{i \in \llbracket 1, Q \rrbracket}$ Note the necessity of resetting...

Build the kernel density estimator $\hat{p}_{\theta_N,t_N}(x) \triangleq \frac{1}{Q} \sum_{i=1}^Q \rho_R(x - X_{u_{\theta_N}}(w_i^N,t_N))$ (B. and Rudi FoCM 2025) and compute safety/reset: $\hat{s}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : g(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$, $\hat{r}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : h(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$ Denote $\hat{P}(\cdot) \triangleq (\hat{p}_{\theta_i,t_i}(\cdot))_{i=1}^N, \hat{S} \triangleq (\hat{s}_{\theta_i,t_i})_{i=1}^N, \hat{R} \triangleq (\hat{r}_{\theta_i,t_i})_{i=1}^N$

- At iteration N: 5 steps
 - 1. Collect Q iid samples $(X_{u_{\theta_N}}(w_i^N,t_N))_{i\in \llbracket 1,Q
 rbracket}$ Note the necessity of resetting...

- 2. Build the kernel density estimator $\hat{p}_{\theta_N,t_N}(x) \triangleq \frac{1}{Q} \sum_{i=1}^Q \rho_R(x X_{u_{\theta_N}}(w_i^N,t_N))$ (B. and Rudi FoCM 2025) and compute safety/reset: $\hat{s}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : g(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$, $\hat{r}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n : h(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$ Denote $\hat{P}(\cdot) \triangleq (\hat{p}_{\theta_i,t_i}(\cdot))_{i=1}^N, \hat{S} \triangleq (\hat{s}_{\theta_i,t_i})_{i=1}^N, \hat{R} \triangleq (\hat{r}_{\theta_i,t_i})_{i=1}^N$
- Estimate safety/reset functions as

$$\hat{s}_N(\theta,t) \triangleq \hat{S}(K+N\lambda I)^{-1}k(\theta,t)$$
 and $\hat{r}_N(\theta,t) \triangleq \hat{R}(K+N\lambda I)^{-1}k(\theta,t)$

- At iteration N: 5 steps
 - 1. Collect Q iid samples $(X_{u_{\theta_N}}(w_i^N, t_N))_{i \in \llbracket 1, Q \rrbracket}$ Note the necessity of resetting...

Showed later why these are safe! Note the necessity of resetting...

- 2. Build the kernel density estimator $\hat{p}_{\theta_N,t_N}(x) \triangleq \frac{1}{Q} \sum_{i=1}^Q \rho_R(x X_{u_{\theta_N}}(w_i^N,t_N))$ (B. and Rudi FoCM 2025) and compute safety/reset: $\hat{s}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n: g(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx, \quad \hat{r}_{\theta_N,t_N} \triangleq \int_{\{x \in \mathbb{R}^n: h(x) \geq 0\}} \hat{p}_{\theta_N}(t_N,x) \, dx$ Denote $\hat{P}(\cdot) \triangleq (\hat{p}_{\theta_i,t_i}(\cdot))_{i=1}^N, \hat{S} \triangleq (\hat{s}_{\theta_i,t_i})_{i=1}^N, \hat{R} \triangleq (\hat{r}_{\theta_i,t_i})_{i=1}^N$
- 3. Estimate safety/reset functions as

$$\hat{s}_N(\theta,t) \triangleq \hat{S}(K+N\lambda I)^{-1}k(\theta,t) \quad \text{and} \quad \hat{r}_N(\theta,t) \triangleq \hat{R}(K+N\lambda I)^{-1}k(\theta,t)$$
 with $k(\theta,t) \triangleq (k((\theta,t),(\theta_i,t_i)))_{i=1}^N, K \triangleq (k((\theta_i,t_i),(\theta_j,t_j)))_{i,j=1}^N$

At iteration N: 5 steps

4. Define the LCBs $LCB_N^s(\theta, T) \triangleq \inf_{t \in [0, T]} \left(\hat{s}_N(\theta, t) - \beta_N^s \sigma_N(\theta, t) \right)$ $LCB_N^r(\theta, T) \triangleq \hat{r}_N(\theta, T) - \beta_N^r \sigma_N(\theta, T)$

• At iteration N: 5 steps

4. Define the LCBs $\operatorname{LCB}_{N}^{s}(\theta,T) \triangleq \inf_{t \in [0,T]} \left(\hat{s}_{N}(\theta,t) - \beta_{N}^{s} \sigma_{N}(\theta,t) \right)$ $\operatorname{LCB}_{N}^{r}(\theta,T) \triangleq \hat{r}_{N}(\theta,T) - \beta_{N}^{r} \sigma_{N}(\theta,T)$ with predictive uncertainty: $\sigma_{N}^{2}(\theta,t) \triangleq k((\theta,t),(\theta,t)) - k(\theta,t)^{*}(K+N\lambda I)^{-1}k(\theta,t).$

• At iteration N: 5 steps

Unlike the SoA, our estimator \hat{p}_{θ_N,t_N} enables proving these are bounded through iterations!

4. Define the LCBs
$$LCB_N^s(\theta,T) \triangleq \inf_{t \in [0,T]} (\hat{s}_N(\theta,t) - \beta_N^s) r_N(\theta,t)$$

$$LCB_N^r(\theta,T) \triangleq \hat{r}_N(\theta,T) - \beta_N^r r_N(\theta,T)$$
 with predictive uncertainty:

$$\sigma_N^2(\theta, t) \triangleq k((\theta, t), (\theta, t)) - k(\theta, t)^* (K + N\lambda I)^{-1} k(\theta, t).$$

At iteration N: 5 steps

Unlike the SoA, our estimator \hat{p}_{θ_N,t_N} enables proving these are bounded through iterations!

4. Define the LCBs $LCB_N^s(\theta,T) \triangleq \inf_{t \in [0,T]} (\hat{s}_N(\theta,t) - \beta_N^s) \tau_N(\theta,t)$

 $LCB_N^r(\theta,T) \triangleq \hat{r}_N(\theta,T) - \beta_N^r N(\theta,T)$ with predictive uncertainty:

Unlike Bayesian, β s proportional to density estimation error, not to noise variance!

$$\sigma_N^2(\theta, t) \triangleq k((\theta, t), (\theta, t)) - k(\theta, t)^* (K + N\lambda I)^{-1} k(\theta, t).$$

At iteration N: 5 steps

Unlike the SoA, our estimator \hat{p}_{θ_N,t_N} enables proving these are bounded through iterations!

4. Define the LCBs $LCB_N^s(\theta,T) \triangleq \inf_{t \in [0,T]} (\hat{s}_N(\theta,t) - \beta_N^s) r_N(\theta,t)$

 $LCB_N^r(\theta,T) \triangleq \hat{r}_N(\theta,T) - \beta_N^r N(\theta,T)$ with predictive uncertainty:

Unlike Bayesian, βs proportional to density estimation error, not to noise variance!

$$\sigma_N^2(\theta, t) \triangleq k((\theta, t), (\theta, t)) - k(\theta, t)^* (K + N\lambda I)^{-1} k(\theta, t).$$

5. Final step: define the safe-resettable feasible set

$$\Gamma_N = \Gamma_0 \cup \left\{ (\theta, t, T) \in D \times [0, T_{\text{max}}]^2 \mid t \leq T, \text{ LCB}_N^s(\theta, T) \geq 1 - \varepsilon, \text{ LCB}_N^r(\theta, T) \geq 1 - \xi \right\}$$

• At iteration N: 5 steps

Unlike the SoA, our estimator \hat{p}_{θ_N,t_N} enables proving these are bounded through iterations!

4. Define the LCBs $LCB_N^s(\theta,T) \triangleq \inf_{t \in [0,T]} (\hat{s}_N(\theta,t) - \beta_N^s) \tau_N(\theta,t)$

 $LCB_N^r(\theta,T) \triangleq \hat{r}_N(\theta,T) - \beta_N^r N(\theta,T)$ with predictive uncertainty.

Unlike Bayesian, β s proportional to density estimation error, not to noise variance!

$$\sigma_N^2(\theta, t) \triangleq k((\theta, t), (\theta, t)) - k(\theta, t)^* (K + N\lambda I)^{-1} k(\theta, t).$$

5. Final step: define the safe-resettable feasible set

$$\Gamma_N = \Gamma_0 \ \cup \ \left\{ (\theta, t, T) \in D \times [0, T_{\max}]^2 \mid t \leq T, \ \operatorname{LCB}_N^s(\theta, T) \geq 1 - \varepsilon, \ \operatorname{LCB}_N^r(\theta, T) \geq 1 - \xi \right\}$$
 and solve $(\theta_{N+1}, t_{N+1}, T_{N+1}) = \underset{(\theta, t, T) \in \Gamma_N}{\operatorname{arg\,max}} \ \sigma_N(\theta, t) \ \text{ until } \ \sigma_N(\theta_{N+1}, t_{N+1}) < \eta$

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$.

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$
 With probability $\ge 1-\delta$

then the stopping condition $\max_{(\theta,t,T)\in\Gamma_N} \sigma_N(\theta,t) < \eta$ is satisfied after at most $N \leq c_2 \eta^{-2/(1-\alpha)}$ iterations for any $\alpha > (m+1)/(m+1+2\nu)$.

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$
 With probability $\ge 1-\delta$

then the stopping condition $\max_{(\theta,t,T)\in\Gamma_N} \sigma_N(\theta,t) < \eta$ is satisfied after at most $N \le c_2 \eta^{-2/(1-\alpha)}$ iterations for any $\alpha > (m+1)/(m+1+2\nu)$. Moreover:

• (Safety): All selected triples (θ_i, t_i, T_i) satisfy $s^{\infty}(\theta_i, T_i) \ge 1 - \varepsilon$ and $r(\theta_i, T_i) \ge 1 - \xi$, providing safety guarantees during training.

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$
 With probability $\ge 1-\delta$

then the stopping condition $\max_{(\theta,t,T)\in\Gamma_N} \sigma_N(\theta,t) < \eta$ is satisfied after at most $N \leq c_2 \eta^{-2/(1-\alpha)}$ iterations for any $\alpha > (m+1)/(m+1+2\nu)$. Moreover:

• (Safety): All selected triples (θ_i, t_i, T_i) satisfy $s^{\infty}(\theta_i, T_i) \geq 1 - \varepsilon$ and $r(\theta_i, T_i) \geq 1 - \xi$, providing safety guarantees during training. Moreover, the final set Γ_N includes only controls meeting these thresholds and can thus serve as a certified safe set for deployment.

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$
 With probability $\ge 1-\delta$

then the stopping condition $\max_{(\theta,t,T)\in\Gamma_N} \sigma_N(\theta,t) < \eta$ is satisfied after at most $N \leq c_2 \eta^{-2/(1-\alpha)}$ iterations for any $\alpha > (m+1)/(m+1+2\nu)$. Moreover:

- (Safety): All selected triples (θ_i, t_i, T_i) satisfy $s^{\infty}(\theta_i, T_i) \geq 1 \varepsilon$ and $r(\theta_i, T_i) \geq 1 \xi$, providing safety guarantees during training. Moreover, the final set Γ_N includes only controls meeting these thresholds and can thus serve as a certified safe set for deployment.
- (Estimation guarantees): For all $(\theta, t, T) \in \Gamma_N$,

$$\|\hat{p}_{\theta}(t,\cdot)-p_{\theta}(t,\cdot)\|_{\infty} \leq c_3\eta, \quad |\hat{s}_N(\theta,t)-s(\theta,t)| \leq c_4\eta, \quad |\hat{r}_N(\theta,t)-r(\theta,t)| \leq c_5\eta.$$

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let $\eta > 0$, and assume Assumptions (A1)–(A3) hold. Set $R = Q^{1/(n+2\nu)}$ and $\lambda = N^{-1}$. Then there exist constants $c_1, \ldots, c_5 > 0$, independent of N, Q, δ, η , such that if

$$c_1 \log(4N/\delta)^{1/2} Q^{\frac{n-2\nu}{2n+4\nu}} \le N^{-1/2},$$
 With probability $\ge 1-\delta$

then the stopping condition $\max_{(\theta,t,T)\in\Gamma_N} \sigma_N(\theta,t) < \eta$ is satisfied after at most $N \leq c_2 \eta^{-2/(1-\alpha)}$ iterations for any $\alpha > (m+1)/(m+1+2\nu)$. Moreover:

- (Safety): All selected triples (θ_i, t_i, T_i) satisfy $s^{\infty}(\theta_i, T_i) \geq 1 \varepsilon$ and $r(\theta_i, T_i) \geq 1 \xi$, providing safety guarantees during training. Moreover, the final set Γ_N includes only controls meeting these thresholds and can thus serve as a certified safe set for deployment.
- (Estimation guarantees): For all $(\theta,t,T)\in\Gamma_N$, $\|\hat{p}_{\theta}(t,\cdot)-p_{\theta}(t,\cdot)\|_{\infty}\leq c_3\eta,\quad |\hat{s}_N(\theta,t)-s(\theta,t)|\leq c_4\eta, \quad |\hat{r}_N(\theta,t)-r(\theta,t)|\leq c_5\eta.$ Thus, for every $t\in[0,T]$

The previous result does not tell us whether $\,\Gamma_N\,$ "grows" towards the true $\,\Gamma\,$ and at which rate...

The previous result does not tell us whether $\,\Gamma_N\,$ "grows" towards the true $\,\Gamma\,$ and at which rate...

New result, soon submitted

Theorem 5.5 (Exploration guarantees). Define $\Gamma^{\eta}(\Gamma_0)$, the η -reachable safe-resettable region from Γ_0 , as the union of connected components of

$$\Gamma^{\eta} \triangleq \left\{ (\theta, T) \in D \times [0, T_{\text{max}}] \mid s^{\infty}(\theta, T) > 1 - \varepsilon + \eta \text{ and } r(\theta, T) > 1 - \xi + \eta \right\}$$

intersecting $\pi_{1,3}(\Gamma_0)$.

The previous result does not tell us whether $\,\Gamma_N\,$ "grows" towards the true $\,\Gamma\,$ and at which rate...

New result, soon submitted

Theorem 5.5 (Exploration guarantees). Define $\Gamma^{\eta}(\Gamma_0)$, the η -reachable safe-resettable region from Γ_0 , as the union of connected components of

$$\Gamma^{\eta} \triangleq \left\{ (\theta, T) \in D \times [0, T_{\text{max}}] \mid s^{\infty}(\theta, T) > 1 - \varepsilon + \eta \text{ and } r(\theta, T) > 1 - \xi + \eta \right\}$$

intersecting $\pi_{1,3}(\Gamma_0)$. Under the setting of Theorem 5.1, with probability at least $1-\delta$ it holds that

$$\Gamma^{\eta}(\Gamma_0) \subset \pi_{1,3}(\Gamma_N) \subset \Gamma.$$

The previous result does not tell us whether Γ_N "grows" towards the true Γ and at which rate...

New result, soon submitted

Theorem 5.5 (Exploration guarantees). Define $\Gamma^{\eta}(\Gamma_0)$, the η -reachable safe-resettable region from Γ_0 , as the union of connected components of

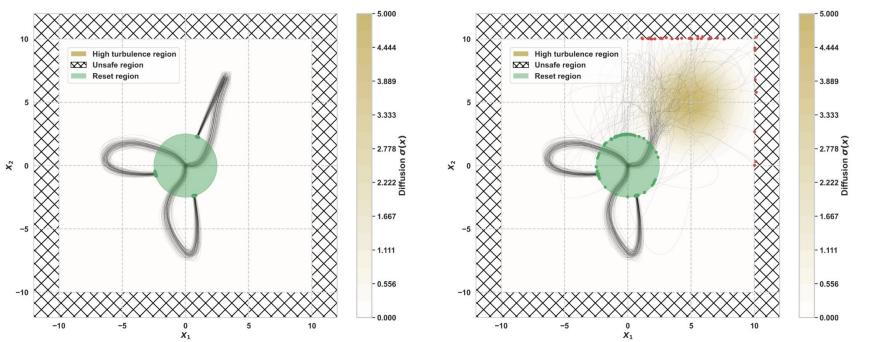
$$\Gamma^{\eta} \triangleq \left\{ (\theta, T) \in D \times [0, T_{\text{max}}] \mid s^{\infty}(\theta, T) > 1 - \varepsilon + \eta \text{ and } r(\theta, T) > 1 - \xi + \eta \right\}$$

intersecting $\pi_{1,3}(\Gamma_0)$. Under the setting of Theorem 5.1, with probability at least $1-\delta$ it holds that

$$\Gamma^{\eta}(\Gamma_0) \subset \pi_{1,3}(\Gamma_N) \subset \Gamma.$$

In short, the known set of "practically usable" safe controls grows towards the true set of safe controls at a given rate!

$$\begin{cases} dX(t) = V(t)dt, \\ dV(t) = u(t, X(t), V(t))dt + a(X(t))dW_t \end{cases} \quad a(X) = A \exp\left(-\frac{\|X - X_c\|^2}{2\sigma^2}\right)$$



Control parametrization

1. Exploration $(0 \le t \le T_{
m explo})$ - $heta_1$, $heta_2$, ... applied on time intervals of fixed length $u(t,X,V)=v(\cos(heta_i),\sin(heta_i))-V$

2. Reset
$$(t>T_{
m explo})$$
 $u(t,X,V)=\kappa imes\left(vrac{\mu_0(X)-X}{\|\mu_0(X)-X\|}-V
ight)$

Control parametrization

1. Exploration $(0 \le t \le T_{
m explo})$ - $heta_1$, $heta_2$, ... applied on time intervals of fixed length $u(t,X,V)=v(\cos(heta_i),\sin(heta_i))-V$

2. Reset
$$(t>T_{\mathrm{explo}})$$

$$u(t,X,V)=\kappa \times \left(v\frac{\mu_0(X)-X}{\|\mu_0(X)-X\|_{L^2}V}\right)$$
 Always steers to $\sup p_0=\overline{B_\rho(0)}$

- Control parametrization
 - 1. Exploration $(0 \le t \le T_{\rm explo})$ $heta_1$, $heta_2$, ... applied on time intervals of fixed length $u(t,X,V)=v(\cos(heta_i),\sin(heta_i))-V$

2. Reset
$$(t>T_{\mathrm{explo}})$$

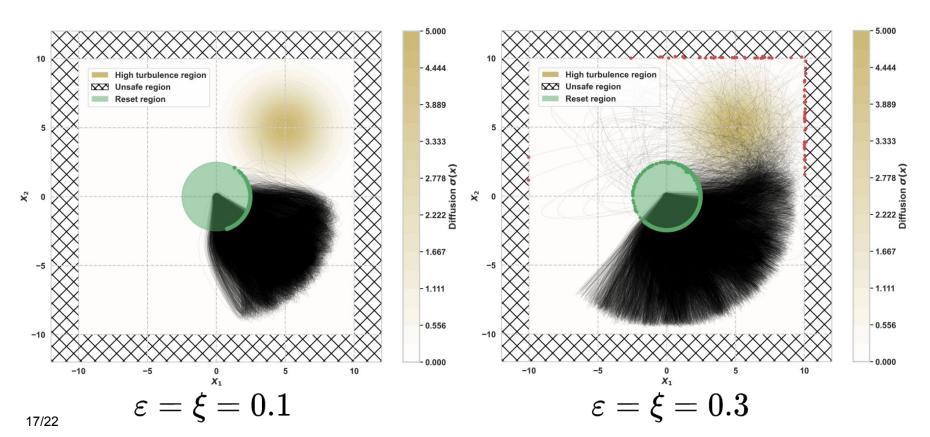
$$u(t,X,V)=\kappa \times \left(v\frac{\mu_0(X)-X}{\|\mu_0(X)-X\|_{L^2(V)}}-V\right)$$
 Always steers to $\sup p_0=\overline{B_{\rho}(0)}$

3. Parameters

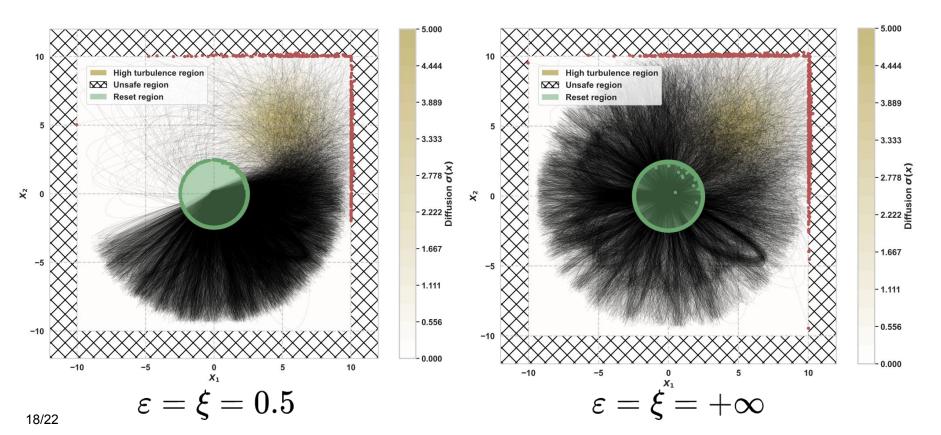
$$v = 2.0, \kappa = 0.5, m = 2, T_{\text{explo}} = 6$$

confidence levels (β_s, β_r) , kernel smoothness (λ, γ) , and bandwidth R, tuned

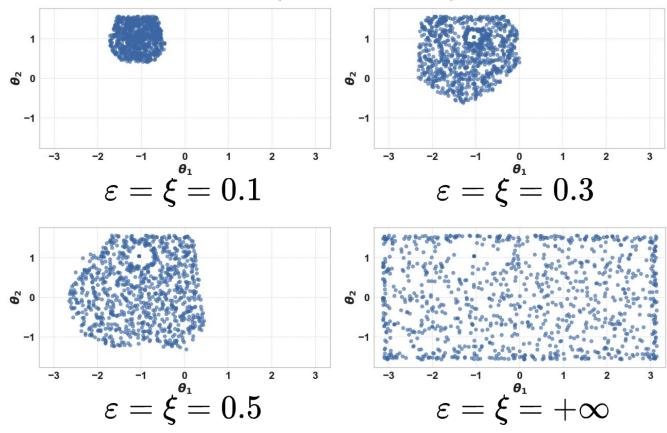
• Four safety/reset scenarios $\varepsilon = \xi \in \{0.1, 0.3, 0.5, +\infty\}$, 1000 iterations



• Four safety/reset scenarios $\varepsilon = \xi \in \{0.1, 0.3, 0.5, +\infty\}$, 1000 iterations



• Four safety/reset scenarios $\ arepsilon = \xi \in \{0.1, 0.3, 0.5, +\infty\}$, 1000 iterations



19/22

Contents

- 1. Some challenges in controlling autonomous systems
- 2. Safely learning controlled SDE
 - a. Problem setting
 - b. Assumptions and algorithm
 - c. Theoretical guarantees
 - d. Numerical example

3. Conclusion

Conclusion: future directions

Extensions

- Validation on physical systems (e.g., quadrotors)
- 2. Improve scalability via fast kernel methods (e.g., sketching, incremental updates)
- 3. Handle abrupt dynamics and other non-diffusive disturbances, such as jump processes

Main references:

- R. Bonalli and A. Rudi, <u>Non-Parametric Learning of Stochastic Differential</u> <u>Equations with Non-asymptotic Fast Rates of Convergence</u>. Foundations of Computational Mathematics (2025), pp. 1-56.
- L. Brogat-Motte, R. Bonalli, and A. Rudi, <u>Safely Learning Controlled</u> <u>Stochastic Dynamics</u>. Proc. Conference on Neural Information Processing Systems, 2025, San Diego.

Conclusion: future directions

Thank you for your attention!

Questions are more than welcome:)