Safely Learning Controlled
Stochastic Dynamics

Workshop on data-driven control and analysis of
dynamical systems - ENSEEIHT - 30/09/2025

Riccardo Bonalli

Laboratoire des Signaux et Systemes
CNRS and Université Paris-Saclay

Laboratoire o.
Signaur & universite
Systemes PARIS-SACLAY

Contents

1. Some challenges in controlling autonomous systems

2. Safely learning controlled SDE
a. Problem setting
b. Assumptions and algorithm
c. Theoretical guarantees

d. Numerical example

3. Conclusion

1/22

Contents

1. Some challenges in controlling autonomous systems

1/22

Challenges in controlling autonomous systems

2/22

Challenges in controlling autonomous systems

2/22

Challenges in controlling autonomous systems

Let us use risk-averse control!

2/22

Mathematically modeling risk-averse control

dX (t) = b(X(t), u(t, X (t)))dt

Mathematically modeling risk-averse control

dX (t) = b(X(t), u(t, X (t)))dt

9(X(t)) 20,t€[0,T] and gr(X(T)) =0

Mathematically modeling risk-averse control

dX (t) = b(X(t), u(t, X (t)))dt

9(X(t)) 20,t€[0,T] and gr(X(T)) =0

Mathematically modeling risk-averse control
dX(t) = b(X(t),u(t, X (t)))dt
(Fatx,ute, x@)aw)

9(X(t)) 20,t€[0,T] and gr(X(T)) =0

Target

3/22

Mathematically modeling risk-averse control
dX(t) = b(X(t),u(t, X (t)))dt
(Fatx,ute, x@)aw)

9(X(t)) = 0, : T)) >0

tei[?g] P(g(X(t)) >0)>1—¢ and P(g(Xp(T))>0)>1—-¢

Target

3/22

Mathematically modeling risk-averse control

dX (1) = b(X (£), u(t, X (£)))dt
@(X(t»u(t,X(t)))dvv@

diffusions, how to learn the space of
g9(X(t)) >0, 0 T)) >0 safe controls with guarantees?
A= o= :

inf P(g(X(t)) >0)>1—¢ and P(g(Xp(T)) >0)>1—¢
Target’

Problem

Under unknown drifts and

t€[0,77]

Several approaches have already been proposed...

Here are a few comments

e Much of the literature focuses on “discrete”, i.e., discrete-time or -state systems
e Bayesian methods provide some of the strongest high-confidence safety guarantees

Several approaches have already been proposed...

Here are a few comments

e Much of the literature focuses on “discrete”, i.e., discrete-time or -state systems
e Bayesian methods provide some of the strongest high-confidence safety guarantees

e For “continuous” systems, offline learning and online adaptation for nonlinear systems
e Lyapunov theory offers formal certification but often requires full dynamics knowledge

Several approaches have already been proposed...

Here are a few comments

Much of the literature focuses on “discrete”, i.e., discrete-time or -state systems
Bayesian methods provide some of the strongest high-confidence safety guarantees

For “continuous” systems, offline learning and online adaptation for nonlinear systems
Lyapunov theory offers formal certification but often requires full dynamics knowledge

Weak point: prior models of the system dynamics or safety functions are required

Several approaches have already been proposed...

Here are a few comments

Much of the literature focuses on “discrete”, i.e., discrete-time or -state systems
Bayesian methods provide some of the strongest high-confidence safety guarantees

For “continuous” systems, offline learning and online adaptation for nonlinear systems
Lyapunov theory offers formal certification but often requires full dynamics knowledge

Weak point: prior models of the system dynamics or safety functions are required

Contents

2. Safely learning controlled SDE

5/22

a.
b.

C.

Problem setting
Assumptions and algorithm
Theoretical guarantees

Numerical example

Formal problem setting

e Control parametrization
ug : [0, Tpax] X R* — R? 6 € D C R™, where D is a compact subset of R™

6/22

Formal problem setting

e Control parametrization
ug : [0, Tmax] X R™ — R? 6 € D c R™, where D is a compact subset of R™

e Safety functions

X, solutionto dX(t)=0b(X(t),u(t,X(t)))dt+ a(X(t),u(t,X(t)))dW (t)

X,(0) ~ po. Define s(6,t) 2P (g(Xy,(t)) >0) and s°(0,T)= t i[%fT] s(0,1)
|0,

6/22

Formal problem setting

6/22

Control parametrization

ug : [0, Tmax] X R™ — R? 6 € D c R™, where D is a compact subset of R™

Safety functions

X, solutionto dX(t)=0b(X(t),u(t,X(t)))dt+ a(X(t),u(t,X(t)))dW (t)

X,(0) ~ po. Define s(6,t) 2P (g(Xy,(t)) >0) and s°(0,T)= t i[%fT] s(0,1)
|0,

Learning problem

Collect data (0, Xus, (WF, 1)) ke, ...k}, ie{1,....Q}, le{l,..M} to “maximally cover” D,

while s (0x,Tk) >1—¢, foreachk e [1,K] (here (Tx)E_ |, = (tar,)5 ;< Tmax)

Formal problem setting

6/22

Control parametrization

ug : [0, Tmax] X R™ — R¢ 6 € D c R™, where D is a compact subset of R™
Safety functions

X, solutionto dX(t) = b(X(t), u(t, X(£))) dt + a(X(t), u(t, X(£))) AW (2)
X,(0) ~ py. Define G(H,t)éP(g(Xue(t))Z@ and s°(0,T) 2 inf s(6,1)

t€(0,T]

Learning problem

Collect data (9k,Xu9k(wf,tz))ke{1 K}, ie{1,...,Q}, 1e{1,...,.M,} to “maximally cover’ D,

.....

while (0, Tx) >1—¢, foreachk € [1,K] (here (Tk)5 ; = (tar,)5_ 1< Timax)

In short: learning safe controls under constraints for the safety function!

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

7/22

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

e To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function h : R™ — R define a region in the state space from which
resets (to the initial distribution) are feasible.

7/22

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

e To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function h : R™ — R define a region in the state space from which
resets (to the initial distribution) are feasible. Specifically:

Ju, T > t: P(Xu|x,0)-x.,(T) € supp py) = 1

h(X,,(t) >0 =

7/22

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

e To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function h : R™ — R define a region in the state space from which
resets (to the initial distribution) are feasible. Specifically:

Ju, T >t P(Xu|Xu(t):Xu9(t) (T) € supp po) = 1

h(X,,(t) >0 =

7/22

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

e To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function h : R™ — R define a region in the state space from which
resets (to the initial distribution) are feasible. Specifically:

u, T >t : P(Xu| x,t)=x.,) (T) € supp py) = 1

h(X,,(t) >0 =

By defining the reset function 7(6,t) = P (h(X,,(t)) > 0),
we now learn subject to the safety and reset constraints

G(Ok,Tk) >1-— g) and s°(0,Ty) >1—¢, foreachk € [1, K]

7/22

Learning through resetting

e In practice, one explores by starting wandering around a known safe region (initial distribution)

e To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function h : R™ — R define a region in the state space from which
resets (to the initial distribution) are feasible. Specifically:

AN

u, T >t : P(Xu|x,@#)=x.,,)(T) € supp po) =1

h(X,,(t) >0 =
and P | inf g¢g(X,(s)) >0
selt,T]

By defining the reset function 7(6,t) = P (h(X,,(t)) > 0),
we now learn subject to the safety and reset constraints

G(Ok,Tk) >1-— g) and s°(0,Ty) >1—¢, foreachk € [1, K]

7/22

With that in mind...

Formal (ultimate) goal

For given precisions ¢, £ > 0, collect data to best estimate (learn)

I‘é{(e,T)er[o,TmaX] s*°(0,T)>1—¢ and r(e,T)zl—é}

with rates of convergence.

8/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For € € [0,1], a non-empty set Sy C D X [0, Tax]| is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For € € [0,1], a non-empty set Sy C D X [0, Tax]| is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.
Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tiyax] is

provided such that
r(0,t) >1—¢ forall (0,t) € Ry.

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For € € [0,1], a non-empty set Sy C D X [0, Tax]| is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.
Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tiyax] is

provided such that
r(0,t) >1—¢& forall (6,t) € Ry.

Letdenote p: (0,t,2) € D X [0, Tiax] X R™ = py(t,x),
where py(t, x) is the density of the state X, (¢) under control ug

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For € € [0,1], a non-empty set Sy C D X [0, Tax]| is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.

Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tinax]| is
provided such that

r(0,t) >1—¢& forall (6,t) € Ry.

Letdenote p: (0,t,2) € D X [0, Tiax] X R™ = py(t,x),
where py (¢, x) is the density of the state X, (¢) under control ug

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev
space HY(R™t™*1) with v > n/2, where n and m denote the state and con-

trol parameter dimensions, respectively. Moreover, supxeRn||p(-,~,:c)|| Hv (Rm+1) < +o00,

SUP(9,t)e D x [0, Tmax] Ip(6, t, ')||Hv(Rn) < o0.

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For ¢ € [0,1], a non-empty set Sy C D X [0, Tnax] is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.

Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tiyax] is
provided such that

r(0,t) >1—¢& forall (6,t) € Ry.

Letdenote p: (0,t,2) € D X [0, Tiax] X R™ = py(t,x),
where py (¢, x) is the density of the state X, (¢) under control ug

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev
space HY(R"™™*1) with v > n/2, where n and m denote the state and con-
trol parameter dimensions, respectively. Moreover, supmeRn”p(-,-,a:)” Hv (Rm+1) < +o00,

SUP(9,t)e D x [0, Tmax] (6, t, ')||HV(R") < 0.

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For ¢ € [0,1], a non-empty set Sy C D X [0, Tnax] is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.

Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tiyax] is
provided such that

r(0,t) >1—¢& forall (6,t) € Ry.

Letdenote p: (0,t,2) € D X [0, Tiax] X R™ = py(t,x),
where py (¢, x) is the density of the state X, (¢) under control ug

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev
space HY(R"™™*1) with v > n/2, where n and m denote the state and con-

trol parameter dimensions, respectively. Moreover, supmeRn”p(-,-,a:)” HY@®m+) < +00,

SUP(9,t)e D x [0, Tmax] (6, t, ')||HV(R") < 0.

9/22

Assumptions and algorithm - part |

Assumption (A1) (Initial safe controls). For € € [0,1], a non-empty set Sy C D X [0, Tinax] is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp.

Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tiyax] is
provided such that

r(0,t) >1—¢& forall (6,t) € Ry.

Letdenote p: (0,t,2) € D X [0, Tiax] X R™ = py(t,x),
where py (¢, x) is the density of the state X, (¢) under control ug

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev
space HY(R"™™*1) with v > n/2, where n and m denote the state and con-

trol parameter dimensions, respectively. Moreover, supmeRn”p(-,-,a:)” HY@®m+) < +00,

SUD (9,t)€ Dx [0, Trmax] Ip(e: -)”HU([]

9/22

Assumptions and algorithm - part Il

e Initialization (N = 0)

{(H,t,T) € D x [0, Tmax]? |t < T, (8,¢) € S, forallt’ € [0,T], (8,T) € RO}

10/22

Assumptions and algorithm - part Il

e Initialization (N = 0)

r, & {(@e D x [0, Twax]? |t < T, (8,¢) € S, forallt’ € [0,T], (8,T) € RO}

Think of it as “observation” time to decrease uncertainty: we may
observe the system not exclusively at states from which it is resettable

10/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

11/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

Q
L1 .

2. Build the kernel density estimator ay,¢x (z) £ 3 > pr(z — Xu,, (v ,ty)) (B.and Rudi
= FoCM 2025)

11/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

Q
L1 .

2. Build the kernel density estimator ay,¢x (z) £ 3 > pr(z — Xu,, (v ,ty)) (B.and Rudi
= FoCM 2025)

and compute safety/reset: 3,1y = / Doy (tn,T)dT, Fop iy = / Doy (tn,) dx
{z€R™:h(z)>0}

{zeR™:g(z) >0}

11/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

Q
2. Build the kernel density estimator o,y () £ ~ Z (wV,tx)) (B. and Rudi
i FoCM 2025)

and compute safety/reset: 3,1y = / Doy (tn,T)dT, Fop iy = / Doy (tn,) dx
{z€R":h(z)>0}

{zeR™:g(z) >0}

Denote P(-) 2 (pg, 4. ()1, S 2 (80,41, R2 (7o,1,) 4

11/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

Q
2. Build the kernel density estimator o,y () £ ~ Z (wV,tx)) (B. and Rudi
i FoCM 2025)

and compute safety/reset: 3,1y = / Doy (tn,T)dT, Fop iy = / Doy (tn,) dx
{z€R":h(z)>0}

{zeR™:g(z) >0}

Denote P(-) 2 (pg, 4. ()1, S 2 (80,41, R2 (7o,1,) 4

3. Estimate safety/reset functions as

$n(0,t) 2 S(K + NXI)7'k(6,t) and #n(0,t) 2 R(K + NAI)~'k(6, 1)

11/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

1. Collect Q iid samples (Xu, (w;",tN))ic[1,0]

A

Q
2. Build the kernel density estimator eyt (z) = Z (wl,tx)) (B.and Rudi
i=1 FoCM 2025)

and compute safety/reset: 3,1y = /
{z€R™:g(z) >0}

Denote P(-) 2 (pg, 4. ()1, S 2 (80,41, R2 (7o,1,) 4

3. Estimate safety/reset functions as
$n(0,t) 2 S(K + NXI)7'k(6,t) and #n(0,t) 2 R(K + NAI)~'k(6, 1)

with k(6,t) £ (k((0,1), (6:,t:))) X1, K 2 (k((63,t:), (05, t5))) Ny

11/22

25‘9N(tN’x) dz, Toyty = / ﬁ@N(tNam) dz
(z€R:h(z)>0}

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

4. Define the LCBs LCB(6,7) £ tei[%fT] (8n(0,t) — Bxon(6,1))

12/22

Assumptions and algorithm - part Il
e Atiteration N: 5 steps

4. Define the LCBs LCB(6,7) £ tei[%fT] (8n(0,t) — Bxon(6,1))

LCBY(0,T) = #n(0,T) — Bvon(0,T) with predictive uncertainty:
ox(0,t) £ k((6,1), (0,)) — k(0,8)" (K + NAI) " k(6,1).

12/22

Assumptions and algorithm - part Il

e Atiteration N: 5 steps [

|

4. Define the L CBX(6,T) = tei[%fT] (§N(9,N(9,t))

LCBY(0,T) & #n(0,T) N(Q,T) with predictive uncertainty:
ox(0,t) £ k((6,1), (0,)) — k(0,8)" (K + NAI) " k(6,1).

12/22

Assumptions and algorithm - part I
e Atiteration N: 5 steps [

Unlike Bayesian, s

. A ’ A T . :
4. Define the L CBX(0,T) = inf (sN(é’,t) N(H,t)) proportional to density

te[0,T] estimation error, not to
LCBY(0,T) & #n(0,T) N(@,T) with predictive uncertainty: noise variance!

o%:(0,t) 2 k((0,1),(0,t)) — k(0,t)* (K + NXI)~"k(6,t).

12/22

Assumptions and algorithm - part I
e Atiteration N: 5 steps [

Unlike Bayesian, s

. A
4. Define the L CBX(0,T) = inf (,§N(9, t) N(H, t)) proportional to density
te[0,T] estimation error, not to
LCBY(0,T) & #n(0,T) N(G, T) with predictive uncertainty: noise variance!

o%:(0,t) 2 k((0,1),(0,t)) — k(0,t)* (K + NXI)~"k(6,t).

5. Final step: define the safe-resettable feasible set
Iy =T U {(9, t,T) € D x [0, Toax]? | t <T, LCB4(6,T) >1 — ¢, LOBL(8,T) > 1 — g}

12/22

Assumptions and algorithm - part I
e Atiteration N: 5 steps [

Unlike Bayesian, s

—>
4. Define the L CBX(0,T) & inf (,§N(9,t) N(H,t)) proportional to density

te[0,T] estimation error, not to
LCBY(0,T) & #n(0,T) N(@,T) with predictive uncertainty: noise variance!

o%:(0,t) 2 k((0,1),(0,t)) — k(0,t)* (K + NXI)~"k(6,t).

5. Final step: define the safe-resettable feasible set
Iy =T U {(9, t,T) € D x [0, Toax]? | t <T, LCB4(6,T) >1 — ¢, LOBL(8,T) > 1 — g}

and solve (On+1,tN+1,TN+1) = argmax on(0,t) until on(Oni1,tni1) <7
(07t7T)eFN

12/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions (Al1)—~(A3) hold. Set R = QY ("*+2V) gnd \ = N—1.

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions (Al)—(A3) hold. Set R = Q'/("t2¥) aqnd \ = N—1. Then there exist constants c1, . . .,c5 > 0,
independent of N, Q, 6, n, such that if

c1 10g(4N/5)1/2Q{;‘T24’L < N2,

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-

tions (Al)—(A3) hold. Set R = Q'/("t2¥) aqnd \ = N—1. Then there exist constants c1, . . .,c5 > 0,
independent of N, Q, 6, n, such that if

c1 10g(4N/5)1/2Q-§;_T24’L < N2,

then the stopping condition max g ; Tyer, On(0,t) < 1 is satisfied after at most N < con~2/(1=)
iterations for any o > (m +1)/(m + 1 + 2v).

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-

tions (Al)—(A3) hold. Set R = Q'/("t2¥) aqnd \ = N—1. Then there exist constants c1, . . .,c5 > 0,
independent of N, Q, 6, n, such that if

c1 10g(4N/5)1/2Q-§;_T24’L < N2,

then the stopping condition max g ; Tyer, On(0,t) < 1 is satisfied after at most N < con~2/(1=)
iterations for any oo > (m + 1)/(m + 1 + 2v). Moreover:

* (Safety): All selected triples (0;,t;,T;) satisfy s°(0;,T;) > 1 —ecandr(0;,T;) > 1—¢,
providing safety guarantees during training.

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions (Al)—(A3) hold. Set R = Q'/("t2¥) aqnd \ = N—1. Then there exist constants c1, . . .,c5 > 0,

independent Of N7 Q7 5, n, such that lf
c1 10g(4N/5)1/2Q% < N2,

then the stopping condition max g ; Tyer, On(0,t) < 1 is satisfied after at most N < con~2/(1=)
iterations for any oo > (m + 1)/(m + 1 + 2v). Moreover:

* (Safety): All selected triples (0;,t;,T;) satisfy s°(0;,T;) > 1 —ecandr(0;,T;) > 1—¢,
providing safety guarantees during training. Moreover, the final set I' 5 includes only
controls meeting these thresholds and can thus serve as a certified safe set for deployment.

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions (Al)—(A3) hold. Set R = Q'/("t2¥) aqnd \ = N—1. Then there exist constants c1, . . .,c5 > 0,

independent Of N7 Q7 5, n, such that lf
c1 10g(4N/5)1/2Q% < N2,

then the stopping condition max g ; Tyer, On(0,t) < 1 is satisfied after at most N < con~2/(1=)

iterations for any oo > (m + 1)/(m + 1 + 2v). Moreover:
* (Safety): All selected triples (0;,t;,T;) satisfy s°(0;,T;) > 1 —ecandr(0;,T;) > 1—¢,
providing safety guarantees during training. Moreover, the final set I' 5 includes only
controls meeting these thresholds and can thus serve as a certified safe set for deployment.

o (Estimation guarantees): For all (0,t,T) € I'y,
||]59(t,) _ pe(ta)Hoo < C3n, |§N(07t) o 8(07t)| < Cq1, |fN(0at) _ r(@,t)| < Cs7)-

13/22

Theoretical guarantees - part |

Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions (Al1)—(A3) hold. Set R = QY/("t2V) qnd \ = N—1. Then there exist constants c1, . .., c5 > 0,

independent of N, Q7 5, m, such that if
c1log(4N/8)Y/2Q s < N~1/2,

then the stopping condition max g ; Tyer, On(0,t) < 1 is satisfied after at most N < con~2/(1=)
iterations for any oo > (m + 1)/(m + 1 + 2v). Moreover:

* (Safety): All selected triples (0;,t;,T;) satisfy s°(0;,T;) > 1 —ecandr(0;,T;) > 1—¢,
providing safety guarantees during training. Moreover, the final set I' 5 includes only
controls meeting these thresholds and can thus serve as a certified safe set for deployment.

o (Estimation guarantees): For all (0,t,T) € I'y,
”ﬁ@(t’) - po(t,)Hoo < C3n, |§N(07t) o 3(07t)| < Cq1, |fN(0at) _ T(eat)l < Cs7)-

[J

Theoretical guarantees - part |

The previous result does not tell us whether T “grows” towards the true I'and at which rate...

14/22

Theoretical guarantees - part |l

The previous result does not tell us whether T “grows” towards the true I'and at which rate...

[]

Theorem 5.5 (Exploration guarantees). Define I'"(I'y), the n-reachable safe-resettable region from Ty,
as the union of connected components of

A {(9,T) € D x [0, Tinace]

s%(6,T) > 1—c+n and r(6,T) > 1-€¢+7}

intersecting 1 3(I'o).

14/22

Theoretical guarantees - part |l

The previous result does not tell us whether T “grows” towards the true I'and at which rate...

[]

Theorem 5.5 (Exploration guarantees). Define I'"(I'y), the n-reachable safe-resettable region from Ty,
as the union of connected components of

A {(9,T) € D x [0, Tinace]

s%(6,T) > 1—c+n and r(6,T) > 1-€¢+7}
intersecting 1 3(I'o). Under the setting of Theorem 5.1, with probability at least 1 — § it holds that

I‘"(I‘O) C 7T1,3(PN) c I

14/22

Theoretical guarantees - part

The previous result does not tell us whether T “grows” towards the true I'and at which rate...

[]

Theorem 5.5 (Exploration guarantees). Define I'"(I'g), the n-reachable safe-resettable region from Ty,
as the union of connected components of

A {(o,T) € D x [0, Timas]

s°0,T)>1—e+n and r(0,T) > 1—§+77}

intersecting m1 3(Io). Under the setting of Theorem 5.1, with probability at least 1 — § it holds that

@(ro) C m5(Tn) C r)

In short, the known set of “practically usable” safe controls

grows towards the true set of safe controls at a given rate!

14/22

Numerical example - Acceleration-controlled robot

dX(t) = V(¥)dt,)
— _ . ”X B Xc”
dV(t) = u(t, X (t),V(t))dt + a(X(t))dW: a(X)= Aexp 52

Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (O <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X,V) = v(cos(6;),sin(0;)) — V

2. Reset (t > Texplo)

_ po(X) — X
utx,v) = (vifetd =5 -)

16/22

Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (0 <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X, V) = v(cos(b;),sin(0;)) — V

2. Reset (t > Toxplo) X
u(t,X,V) =k x (’U ”'Z() — =
Always steers to supp po = B,(0)

16/22

Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (0 <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X, V) = v(cos(b;),sin(0;)) — V

2. Reset (t > Toxplo) X
u(t,X,V) =k x ('v ”Z() — =
Always steers to supp po = B,(0)

3. Parameters
v=2.0,k=0.5m =2, Texplo = 6
confidence levels (85, 5,), kernel smoothness (\,), and bandwidth R, tuned

16/22

Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, 400}, 1000 iterations

"" "" = @W T
10 . V4 / 10 . .
-4.444 ~-4.444
High turbulence region High turbulence region
BASA Unsafe region BASA Unsafe region
Reset region Reset region
-3.889 -3.889
5 5
-3.333 -3.333
X X
-2778°g -2778°F
X 0 s X o s
- -
-2.222 € f2222¢
(=] (=]
-1.667 -1.667
-5
-1.111 -1.111
@ -0.556 - 0.556
-0.000 -0.000
-10 -5 0 5 10

17/22

Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, 400}, 1000 iterations

-5.000

-4.444

High turbulence regi
EAA Unsafe region
Reset region

High turbulence region
BAA Unsafe region

Reset region -3.889

-3.333

-2.778

ffusion o(x)

-2.222

D

-1.667

-1.111

-0.556

-0.000

18/22 g

-2.778

-2.222

-5.000

-4.444

-3.889

-3.333

ffusion o(x)

D

-1.667

1111

-0.556

-0.000

Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, +00}, 1000 iterations

19/22

£ = 561: 0.3

fi”{"'&"("‘ =, 1.0-3.: .-h. 00"\1.0.::#

h e of ?
3

‘ ’ ‘0\ :..‘..:“% [X} ""0 I’...

ogd
. ° n. n ‘. ~ $ - : {: :t ::o ~.. .’
\t"" Lh B PGS ML, i Xpt
;: " "h o "ﬁ..ﬁ.ﬁ ""::‘.', o .:.‘)
LIPS 220 % ° 1
-, 3% ., :&.‘.". ST 8 $&a
& Afge © b ¥ o LY °
*0 ’ ‘ . o & s .. .', ... o &
®e® ° @
W- u’ud’ & -&. !-tsaﬁ -a.“ %% % 3N
-3 -2 i | 0 1 2 3

8:661: —I—OQ

Contents

1. Some challenges in controlling autonomous systems

2. Safely learning controlled SDE
Problem setting

a
b. Assumptions and algorithm

O

Theoretical guarantees

d. Numerical example

3. Conclusion

20/22

Conclusion:; future directions

Extensions
1. Validation on physical systems (e.g., quadrotors)
2. Improve scalability via fast kernel methods (e.g., sketching, incremental

updates)
Handle abrupt dynamics and other non-diffusive disturbances, such as
jump processes

Main references:

1. R.Bonalli and A. Rudi, Non-Parametric Learning of Stochastic Differential
Equations with Non-asymptotic Fast Rates of Convergence. Foundations of
Computational Mathematics (2025), pp. 1-56.

2. L. Brogat-Motte, R. Bonalli, and A. Rudi, Safely Learning Controlled
Stochastic Dynamics. Proc. Conference on Neural Information Processing
Systems, 2025, San Diego.

21/22

https://arxiv.org/pdf/2305.15557
https://arxiv.org/pdf/2305.15557
https://arxiv.org/pdf/2506.02754
https://arxiv.org/pdf/2506.02754

Conclusion:; future directions

Thank you for your attention!

Questions are more than welcome :)

22/22

