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Though unwanted events might happen…

Let us use risk-averse control!
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Mathematically modeling risk-averse control

Problem

Under unknown drifts and 
diffusions, how to learn the space of 

safe controls with guarantees?
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Presentation based on a collaboration with L. Brogat-Motte 
and A. Rudi, work recently accepted at NeurIPS 2025
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● Control parametrization

● Safety functions

Define and

● Learning problem

Collect data to “maximally cover”

while (here                                                )

In short: learning safe controls under constraints for the safety function!
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● In practice, one explores by starting wandering around a known safe region (initial distribution)

● To enable “well-posed” learning, i.e., collecting iid samples, we introduce a reset mechanism

We let a function                          define a region in the state space from which 
resets (to the initial distribution) are feasible. Specifically:

Not that strong in practice:       may be a stopping time!
Might be 
hard!!!
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Formal (ultimate) goal

For given precisions 𝜀, 𝜉 > 0, collect data to best estimate (learn)

with rates of convergence.
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Hinges upon (local) 
stochastic controllability

Model-free settings can be considered as well!
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● Initialization (N = 0)

Think of it as “observation” time to decrease uncertainty: we may 
observe the system not exclusively at states from which it is resettable
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Assumptions and algorithm - part II
● At iteration N

5.   Final step: define the safe-resettable feasible set
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Theoretical guarantees - part II
The previous result does not tell us whether         “grows” towards the true     and at which rate…

In short, the known set of “practically usable” safe controls 
grows towards the true set of safe controls at a given rate!

New result, soon submitted
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● Control parametrization

Numerical example - Acceleration-controlled robot

2.   Reset

3.   Parameters

tuned

1.   Exploration                                - 𝜽1, 𝜽2, … applied on time intervals of fixed length

Always steers to
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Conclusion: future directions

Extensions
1. Validation on physical systems (e.g., quadrotors)
2. Improve scalability via fast kernel methods (e.g., sketching, incremental 

updates)
3. Handle abrupt dynamics and other non-diffusive disturbances, such as 

jump processes

Main references:
1. R. Bonalli and A. Rudi, Non-Parametric Learning of Stochastic Differential 

Equations with Non-asymptotic Fast Rates of Convergence. Foundations of 
Computational Mathematics (2025), pp. 1-56.

2. L. Brogat-Motte, R. Bonalli, and A. Rudi, Safely Learning Controlled 
Stochastic Dynamics. Proc. Conference on Neural Information Processing 
Systems, 2025, San Diego.
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Thank you for your attention!

Questions are more than welcome :)


