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Challenges in controlling autonomous systems

Let us use risk-averse control!
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Mathematically modeling risk-averse control

dX (1) = b(X (£), u(t, X (£)))dt
@(X(t»u(t,X(t)))dvv@

diffusions, how to learn the space of
g9(X(t)) >0, 0 T)) >0 safe controls with guarantees?
A= o= :

inf P(g(X(t)) >0)>1—¢ and P(g(Xp(T)) >0)>1—¢
Target’

Problem

Under unknown drifts and

t€[0,77]
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Control parametrization

ug : [0, Tmax] X R™ — R¢ 6 € D c R™, where D is a compact subset of R™
Safety functions

X, solutionto dX(t) = b(X(t), u(t, X(£))) dt + a(X(t), u(t, X(£))) AW (2)
X,(0) ~ py. Define G(H,t)éP(g(Xue(t))Z@ and s°(0,T) 2 inf s(6,1)

t€(0,T]

Learning problem

Collect data (9k,Xu9k(wf,tz))ke{1 ..... K}, ie{1,...,Q}, 1e{1,...,.M,}  to “maximally cover’ D,

.....

while (0, Tx) >1—¢, foreachk € [1,K] (here (Tk)5 ; = (tar,)5_ 1< Timax)

In short: learning safe controls under constraints for the safety function!
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and P | inf g¢g(X,(s)) >0
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With that in mind...

Formal (ultimate) goal

For given precisions ¢, £ > 0, collect data to best estimate (learn)

I‘é{(e,T)er[o,TmaX] s*°(0,T)>1—¢ and r(e,T)zl—é}

with rates of convergence.
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Assumptions and algorithm - part Il

e Initialization (N = 0)

r, & {(@e D x [0, Twax]? |t < T, (8,¢) € S, forallt’ € [0,T], (8,T) € RO}

Think of it as “observation” time to decrease uncertainty: we may
observe the system not exclusively at states from which it is resettable
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3. Estimate safety/reset functions as
$n(0,t) 2 S(K + NXI)7'k(6,t) and #n(0,t) 2 R(K + NAI)~'k(6, 1)

with k(6,t) £ (k((0,1), (6:,t:))) X1, K 2 (k((63,t:), (05, t5))) Ny
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o (Estimation guarantees): For all (0,t,T) € I'y,
”ﬁ@(t’ ) - po(t, )Hoo < C3n, |§N(07t) o 3(07t)| < Cq1, |fN(0at) _ T(eat)l < Cs7)-

[ J




Theoretical guarantees - part |

The previous result does not tell us whether T “grows” towards the true I'and at which rate...
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Theorem 5.5 (Exploration guarantees). Define I'"(I'y), the n-reachable safe-resettable region from Ty,
as the union of connected components of

A {(9,T) € D x [0, Tinace]

s%(6,T) > 1—c+n and r(6,T) > 1-€¢+7}

intersecting 1 3(I'o).
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as the union of connected components of

A {(9,T) € D x [0, Tinace]

s%(6,T) > 1—c+n and r(6,T) > 1-€¢+7}
intersecting 1 3(I'o). Under the setting of Theorem 5.1, with probability at least 1 — § it holds that
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Theoretical guarantees - part

The previous result does not tell us whether T “grows” towards the true I'and at which rate...

[ ]

Theorem 5.5 (Exploration guarantees). Define I'"(I'g), the n-reachable safe-resettable region from Ty,
as the union of connected components of

A {(o,T) € D x [0, Timas]

s°0,T)>1—e+n and r(0,T) > 1—§+77}

intersecting m1 3(Io). Under the setting of Theorem 5.1, with probability at least 1 — § it holds that

@(ro) C m5(Tn) C r)

In short, the known set of “practically usable” safe controls

grows towards the true set of safe controls at a given rate!
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Numerical example - Acceleration-controlled robot

dX(t) = V(¥)dt, )
— _ . ”X B Xc”
dV(t) = u(t, X (t),V(t))dt + a(X(t))dW:  a(X)= Aexp 52




Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (O <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X,V) = v(cos(6;),sin(0;)) — V

2. Reset (t > Texplo)

_ po(X) — X
utx,v) = (vifetd =5 - )
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Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (0 <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X, V) = v(cos(b;),sin(0;)) — V

2. Reset (t > Toxplo) X
u(t,X,V) =k x (’U ”'Z( ) — =
Always steers to supp po = B,(0)

16/22



Numerical example - Acceleration-controlled robot

e Control parametrization

1. Exploration (0 <t < Texplo) - 04, 0, ... applied on time intervals of fixed length
u(t, X, V) = v(cos(b;),sin(0;)) — V

2. Reset (t > Toxplo) X
u(t,X,V) =k x ('v ”Z( ) — =
Always steers to supp po = B,(0)

3. Parameters
v=2.0,k=0.5m =2, Texplo = 6
confidence levels (85, 5,), kernel smoothness (\,), and bandwidth R, tuned
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Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, 400}, 1000 iterations

"" "" = @W T
10 . V4 / 10 . .
-4.444 ~-4.444
High turbulence region High turbulence region
BASA  Unsafe region BASA Unsafe region
Reset region Reset region
-3.889 -3.889
5 5
-3.333 -3.333
X X
-2778°g -2778°F
X 0 s X o s
- -
-2.222 € f2222¢
(=] (=]
-1.667 -1.667
-5
-1.111 -1.111
@ -0.556 - 0.556
-0.000 -0.000
-10 -5 0 5 10
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Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, 400}, 1000 iterations

-5.000

-4.444

High turbulence regi
EAA Unsafe region
Reset region

High turbulence region
BAA Unsafe region

Reset region -3.889

-3.333

-2.778

ffusion o(x)

-2.222

D

-1.667

-1.111

-0.556

-0.000
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Numerical example - Acceleration-controlled robot

e Four safety/reset scenarios ¢ = £ € {0.1,0.3,0.5, +00}, 1000 iterations
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Conclusion:; future directions

Extensions
1. Validation on physical systems (e.g., quadrotors)
2. Improve scalability via fast kernel methods (e.g., sketching, incremental

updates)
Handle abrupt dynamics and other non-diffusive disturbances, such as
jump processes
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Conclusion:; future directions

Thank you for your attention!

Questions are more than welcome :)
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