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RL: Discrete time optimal control

System

xk+1 = f (xk) + g(xk)u(xk) (1)

• xk ∈ Ω ⊂ Rn is the state variable vector

• Ω being a compact set

• u(xk) ∈ U ⊂ Rm is the control input vector

• f (x) is C 1 and x = 0 is an equilibrium state such that
f (0) = 0 and g(0) = 0.

Note: u(xk) will be denoted as uk .
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RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
π(·) : Rn → Rm, that defines for every state xk , a control action:

uk = π(xk) (2)

• Such mappings → feedback controllers.

• Example: linear state-variable feedback uk = π(xk) = −Kxk
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RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uk = π(xk):

J (xk , uk) =
∞∑
n=k

r(xn, un) (3)

where r(xn, un) is the utility function defined as:
r(xn, un) = xTn Qxn + uTn R un

• Q symmetric positive semi-definite matrix Q = QT ⩾ 0

• R is a symmetric positive definite matrix R = RT > 0.
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = π(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Bellman principle:
Backwards in Time!!
Optimal control (policy):

Vπ(xk) =
∞∑
n=k

r(xn, un), ∀xk
Vπ(xk) = r(xk , uk) + Vπ(xk+1)

H(xk , uk ,Vπ) = r(xk , uk) +Vπ(xk+1)−Vπ(xk)

V ∗(xk) = min
uk∈U

(r(xk , uk) + Vπ(xk+1))

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))
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RL: Discrete time optimal control

Bellman principle:
(DT Hamilton-
Jacobi-Bellman
Equation)

Optimal control
(policy):

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

= min
uk∈U

(
xTk Qxk + uTk R uk + V ∗(xk+1)

)
= min

uk∈U

(
xTk Qxk + uTk R uk + V ∗(f (xk) + g(xk)uk)

)

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = u∗k = (−1/2)R−1gT (xk)
∂V ∗(xk+1)

∂xk+1
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: πj(xk)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.
Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1) ; Vj+1(0) = 0

Policy Improvement
Determine an improved policy
πj+1(xk) = argmin

uk∈U
(r(xk , uk) + Vj+1(xk+1))
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DT Policy Iteration: Observations

• Initial policy must be stabilizing.
• Policy Iteration (Howard, 1960; Leake and Liu, 1967) ⇒

• Vj+2(xk) ≤ Vj+1(xk)

• As j →∞:
• Vj(xk)→ V ∗(xk)

• πj → π∗

• Convergence to optimal cost and thus, optimal control policy.
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Forward-in-time Learning

Temporal Difference Error (TD error):
ek = r(xk , πxk ) + Vπ(xk+1)− Vπ(xk)

• RHS is DT Hamiltonian

• If Bellman Eq holds, ek is zero.

• Linear in x .

• Thus, given a policy π(x), Least Square based solution at
each time k for ek = 0.
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NN based approximation

Value Function approximation (VFA): Neural Networks
• Value function is sufficiently smooth over compact space
• Consider dense basis set {ϕi (x)} with basis vector

(Weierstrass Theorem):
ϕ(x) = [φ1(x)φ2(x)...φL(x)] :Rn → RL

Vπ(x) =
∑L

i=1 wiφi (x) = W Tϕ(x)

Substituting in Bellman TD equation:
ek = r(xk , πxk ) +W Tϕ(xk+1)−W Tϕ(xk)

Figure: NN based function approximation
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Online Policy Iteration

Figure: Online PI
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Safe RL Motivations

Conventional RL:
• Stability
• Optimality: Performance, energy consumption etc.

Does NOT:
• ensure SAFETY.

Poses ”Threat”
• during Exploration: data collection phase.
• during Exploitation: learning phase.

Treatment remains different from SATURATION
• nearness to safety frontier also important
• action at time k may leads to violation at k + l
• may vary with environment
• unmodelled effects, stochastic etc.
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System
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Safe Set

Definition

The safe set S and its boundary ∂S can be mathematically defined
as:
S = {x ∈ Ω|h(x) ⩾ 0}
∂S = {x ∈ Ω|h(x) = 0}
where h(x) : Rn → R belongs to C 1 and h(x) > 0 represents the
admissible state space that respects the safety requirements.

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



25/83

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Nonlinear System Discrete Time
Safe RL: Safe Exploration, Continuous-time systems
Safe Exploration as Relaxed Robust Control Problem

On going works and possible perspectives
References

Strategy
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Barrier Function

Definition

BF candidate (Ames et al., 2016; Brunke et al., 2022; Wabersich
et al., 2023) Bγ(x) : S → R satisfies the following properties:

1 Bγ(x) > 0 ∀x ∈ S
2 Bγ(x)→∞ ∀x ∈ ∂S
3 Bγ(x) is monotonically decreasing ∀x ∈ S
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Barrier Function Candidate
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Control Barrier Function CBF

Definition

Control Barrier functions for DT systems Agrawal and Sreenath,
2017: A function Bγ(x) : S → R is a CBF on the safe set S and
for the nonlinear DT control system (1) if there exists:

1 locally Lipschitz class K functions α1 and α2 such that

1

α1 (h (xk))
⩽ Bγ(xk) ⩽

1

α2 (h (xk))
, ∀x ∈ intS (4)

2 a safe control input uk ∈ U s , ∀x ∈ intS such that

∆Bγ (xk+1, xk) := Bγ (f (xk) + g(xk) uk)− Bγ (xk) ⩽ α3(h(xk))
(5)
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Control Barrier Function CBF

These conditions imply:

• uk maintains the barrier function Bγ(xk) ⩾ 0, ∀k ∈ Z+ given
Bγ(x0) ⩾ 0

• safe input maintains the trajectory of system within the safe
set S if the initial state x0 is within S.
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Safety Aware Control design

Modified Cost

Classical cost-to-go modified and augmented with a CBF
candidate as:

min
u∈U

Js (xk , u) =
∞∑
n=k

rs(xn, un) =
∞∑
n=k

xTn Qxn + uTn R un + Bγ(xn)

Bγ(x) : S → R is augmented utility function rs(xk , uk) as:

rs(xk , uk) = xTk Qxk + uTk R uk + Bγ(xk) (6)

The candidate CBF Bγ(x) is sensitive to a coefficient γ that
models the relative importance of the CBF to the utility function.
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Safe Admissible policy and strict interiority

Definition

Safe admissible control policy: Ua = U ∩ U s

Definition

Strict interiority of initial condition:
The initial condition of system (1) remains strictly in the interior of
the safe set S, i.e. x0 ∈ intS.

Assumption

Ua = U ∩ U s ̸= ∅
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Safety Analysis

Lemma

Given an arbitrary admissible control policy u(1)(xk) ∈ Ua (denoted
as u1k), if there exists a positive definite value function W (x) ∈ C1
on Ω such that
1
2

(
f (xk) + g(xk)u

(1)
k − xk

)T
∇2Wk

(
f (xk) + g(xk)u

(1)
k − xk

)
+ ∇W T

k

(
f (xk) + g(xk)u

(1)
k − xk)

)
+

(
xTk Qxk + (u

(1)
k )TRu

(1)
k + Bγ(xk)

)
= 0

and W (x0, u
(1)
0 ) = Js(x0, u

(1)
0 ).

Then, W (xk , u
(1)
k ) is the value function of the system for all

k = 0, ...,∞ applying the feedback control input u
(1)
k and

W (xk , u(xk)) = Js(xk , u(xk)).
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G-SHJB

Definition

G-SHJB Generalised Safety-aware Hamiltonian Jacobi Bellman
(G-SHJB) for DT systems

(1/2)∆xT∇2W (x)∆x +∇W (x)T∆x

+ xTQx + u(x)TRu(x) + Bγ(x) = 0

W (0) = 0

∆x = f (x) + g(x)u(x)− x

(7)
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G-SHJB

• The G-SHJB with boundary condition can be used to solve
infinite-time problems.

• Given an admissible control input, solve G-SHJB to obtain the
value function W (x)

• Then, W (x0) to calculate the cost of the admissible control in
Js .

However, the objective is to improve the performance of the
system and guarantee safety over time by updating the control law.

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



35/83

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Nonlinear System Discrete Time
Safe RL: Safe Exploration, Continuous-time systems
Safe Exploration as Relaxed Robust Control Problem

On going works and possible perspectives
References

G-SHJB

Definition

G-SHJB Hamiltonian

H(x ,W (x), u(x),Bγ(x)) =

(1/2)∆xT∇2W (x)∆x +∇W (x)T∆x

+ xTQx + u(x)TRu(x) + Bγ(x)

(8)

Policy Improvement

∂H i
(
x ,W (i)(x), u(i+1),Bγ(x)

)
∂u(i+1)

= 0

u(i+1) =
−gT (x)

[
∇W (i) +∇2W (i)(f (x)− x)

][
gT (x)∇2W (i)g(x) + 2R

] (9)
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Bounded CBF at each step

Lemma

Consider the policy improvement step (9) with corresponding

control policy sequence {u(i)k }
i+1
i=1 ={u1k , u2k ...u

(i+1)
k } and

corresponding sequence of value functions due to sequential

minimization {W (i)
k (xk , u

(i)
k )}i=i+1

i=1 = {W (1)
k ,W

(2)
k ...W

(i+1)
k }.

Then, the CBF is bounded at each sequential step i .
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Invariance of Safe Set

Theorem

Consider Bγ(x), Safety aware cost, and the control policy obtained
through sequential steps (9) , then the safe set S is invariant along
the system trajectories.
That is, if the initial state lies within the interior of safe set S, i.e.
x0 ∈ intS, then xk ∈ intS ∀k ∈ Z+.
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Stability analysis

Theorem

Assuming x = 0 is the equilibrium, within the safe region D ⊂ R ,
the CBF candidate Bγ(x), cost to go and consider the policy
improvement step (9)

with corresponding control policy sequence {u(i)k }
i+1
i=1

={u1k , u2k ...u
(i+1)
k } along with corresponding sequence of positive

definite value functions due to sequential minimization

{W (i)
k (xk , u

i
k)}

i=i+1
i=1 = {W (1)

k ,W
(2)
k ...W

(i+1)
k } , then the control

inputs obtained from policy sequence asymptotically stabilizes the
system within the safe region D.

∆W
(i)
k ⩽ −xTk Qxk ⩽ −λmin(Q)∥xk∥2
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Optimality Analysis

Theorem

Given an initial admissible control u0k ∈ Ua , solving G-SHJB in an
iterative manner and improving the control law using (9), the

sequence of solutions i.e. sequence of value functions W
(i)
k and

sequence of control laws u
(i)
k converge, respectively, to the optimal

value function W ∗
k and corresponding optimal safe control law u∗k

i.e. W
(i)
k →W ∗

k and u
(i)
k → u∗k .

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



40/83

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Nonlinear System Discrete Time
Safe RL: Safe Exploration, Continuous-time systems
Safe Exploration as Relaxed Robust Control Problem

On going works and possible perspectives
References

On-policy vs Off-policy

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



41/83

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Nonlinear System Discrete Time
Safe RL: Safe Exploration, Continuous-time systems
Safe Exploration as Relaxed Robust Control Problem

On going works and possible perspectives
References

Off-policy Approach

Off-policy Equation

xk+1 = fk + gku
(i)
k + gk(uk − u

(i)
k ) (10)

• Behaviour policy is a safe policy that is applied to the
system to execute data collection under various scenarios
including those that remain close to boundary of safe set.

• Target policy is the policy that is improved towards the
optimal policy using the data collected.
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Off-policy S-GHJB

Theorem

The successive differences of value function W i along an off-policy
based system trajectory (f , g , u(i), u) can be derived as:

W
(i)
k+1 −W

(i)
k =− xTk Qxk − Bγ(xk)− u

(i)T
k Ru

(i)
k

− 2u
(i+1)T
k R(uk − u

(i+1)
k )
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NN based approximation

NN approximation

Ŵ
(i)
k := Ŵ (i)(xk) = Ω̂

(i)T
c Φ(x) =

Lc∑
j=1

ωΩ
(i)
c

j ϕj(x) (11)

û(i)(xk) := û
(i)
k = Ω̂

(i)T
a Ψ(x) =

La∑
j=1

ωΩ
(i)
a

j σj(x) (12)
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Off-policy temporal difference

NN based expression Off-policy G-SHJB

e
(i)
k = Ω̂

(i)T
c Φ(xk+1)− Ω̂

(i)T
c Φ(xk) +

(
xTk Qxk + u

(i)
k

T
Ru

(i)
k + Bγ(xk)

)
+ 2

m∑
j=1

ρj Ω̂
(i)T
a,j Ψ(xk)v

(i)
j (13)
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Off-policy temporal difference

Least Square Problem: Ŵ(i)TH(i) = Y (i)

• Ŵ(i)T ∈ R1×(Lc+mLa) as Ŵ(i)T =
[
Ω̂
(i)
c , Ω̂

(i)
a,1, Ω̂

(i)
a,2, ..., Ω̂

(i)
a,m

]
,

• independent data vector H(i) ∈ R(Lc+mLa)×N as

H(i) =
[
h
(i)
1 h

(i)
2 ...h

(i)
N

]
wherein j ∈ (1, ...N)

h
(i)
j =

[
θ, 2ρ1Ψ(xk)v

(i)
1 , ..., 2ρmΨ(xk)v

(i)
m

]
∈ R(Lc+mLa)

• dependant data vector Y (i) ∈ R1×N as

Y (i) =
[
y
(i)
1 , y

(i)
2 , ..., y

(i)
N

]
wherein the data collected

∀k ∈ (1, ...,N) is given by the observed reward (augmented

utility) y
(i)
k = −r (i)s,k .
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Off-policy temporal difference

Least Square Solution

Ŵ(i)T =
(
H(i)H(i)T

)−1
H(i)Y (i) (14)

The unique solution exists if the number of points of data
collection is greater or equal to the order of approximation or
N > (Lc +mLa).
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Algorithm
Algorithm 1: Off-policy safe policy iteration
1: procedure Data Collection
2: Employ an initial noisy stabilizing control policy Ua = U ∩ U s

until number of points of data collection is greater or equal to the
order of approximation or N > (Lc +mLa).

3: end procedure
4: procedure Off-policy Policy Evaluation and

Improvement
5: Policy Iteration Solve for Ŵ and terminate the process when the

following approximation error is within a prefixed convergence

threshold ϵ , chosen sufficiently small.
∑m

j=1

∥∥∥Ŵi,j − Ŵi−1,j

∥∥∥ ≤ ϵ
6: Update If not, let i ← i + 1 and go to step 5.
7: Application Update the controller using learned weights and

apply safe optimal policy to the system.
8: end procedure
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Simulations

Car model


yk+1

vk+1

ϕk+1

ψk+1

 =


1 Ts vl0.Ts 0

0 1 + (−Cf +Cr
Mvl0

)Ts 0 (bCr−aCf
Mvl0

− vl0)Ts

0 0 1 Ts

0 (bCr−aCf
Izvl0

)Ts 0 1



yk
vk
ϕk
ψk

+


0
Cf
M
0

aCf
Iz

 .Ts.uk +


0
0
−1
0

 .Ts.dk (15)
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Simulations

Safety aware Reward/Utility function

rs(xk , uk) = xTk Qxk + uTk Ruk −m(log(
γ(x1,k + ymax)

γ(x1,k + ymax) + 1
)+

log(
γ(−x1,k + ymax)

γ(−x1,k + ymax) + 1
))

• yk and vk are lateral displacement and its velocity
• ymax expresses the absolute value of maximum safe
displacement from the center of the road.
• ϕk is error yaw angel and ψk is its derivative,
• uk is the steering angle,
• dk is the desired yaw rate obtained from the curvature of the
road as dk = vl0

Rr
;

• vl0 is constant longitudinal speed and Rr ,k is road radius of
curvature at any k, assumed constant here.
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Simulations

Actor and Critic NNs

Φ(x) = [x21 x22 x23 x24 x1x2 x1x3, x1x4 x2x3

x2x4 x3x4 (x1 − ymax)
2 x1

4, x2
4]

Ψ(x) = [x1 x2 x3 x4]
T
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Lateral displacement zoomed
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Lateral displacement
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Lateral displacement zoomed
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Other states
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Conclusions

• Model free approach (data based)

• Optimality

• Stability

• Safety during operation—OK!

• Safety during EXPLORATION ???

• Initial admissible policy ?????
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SHhhhhhh.....!

BEHIND SCENES!!!
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Safety FAILURE during Exploration!!!!
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System under exploration

Under exploration noise

ẋ = f (x) + g(x)(u + e) (16)

ẋ = f (x) + g(x)u + p(x)w (17)

Key Idea: The system (16) is input-to-state stabilizable if and only
if there exists an ISS-CLF.
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Safe Exploration
Robust QP Problem

Find the control usafe and the relaxation variable δ that satisfy

min
usafe ,δ

1

2
(uTsafeusafe + ℓδT δ)

s.t. F1 = a1 + b1(u + usafe) + δ ≤ 0

F2 = a2 + b2(u + usafe) ≤ 0

(18)

with
a1 = Lf V (x) + LgV (x)η−1(x) + α(x)

a2 = Lf Bγ(x) + LgBγ(x)e(t)− αB(h(x))

b1 = LgV (x)

b2 = LgBγ(x)

The gradients of the R-CBF Bγ and ISS-CLF V , α, αB , η
−1 are

assumed to be Lipschitz continuous.
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Safe off-policy

ẋ = f (x) + g(x)[u0 + e + usafe ] (19)

The initial policy u0,random is randomly generated then by adding
the solution of the Robust-QP problem usafe , u0,random is modified
to ensure that the resulting control policy u0 is both safe and
admissible. Then, above can be rewritten as

ẋ = f (x) + g(x)ui + g(x)νi (20)

where νi = u0 + e + usafe − ui = us − ui and unoisy = u0 + e.
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Lemma

The weights Ĉi and Ûi can be obtained by solving the following
least-squares (LS) equation:

Θ̃N
i

[
vec(Ĉi )

vec(ÛT
i )

]
= ẼN

i (21)

for N > N1 +mN2 and

Θ̃N
i = [Θ̃i (t1), . . . , Θ̃i (tN)]

T

ẼN
i = [Ẽi (t1), . . . , Ẽi (tN)]

T
(22)

where

Θ̃i (t) =

[
[Φ(x(t + T ))− Φ(x(t))]T

2[IuΨ(R ⊗ IN2)− IΨΨ(Û
T
i−1R ⊗ IN2)]

]T
(23)

Ẽi (t) = −IΨΨ[Û
T
i−1 ⊗ ÛT

i−1]vec(R)−
∫ t+T

t
[q(x) + Bγ(x)]dt (24)

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



65/83

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Nonlinear System Discrete Time
Safe RL: Safe Exploration, Continuous-time systems
Safe Exploration as Relaxed Robust Control Problem

On going works and possible perspectives
References

End to End Safe Learning-CT
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Safe Initialization, Exploration, and Exploitation
(operation)
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Example
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Conclusions

• Optimality

• Stability

• Safety during operation—OK!

• Safety during EXPLORATION –OK!

• Initial admissible policy –OK!
• BUT,

• Tracking?

• Exploration Quality ?
• Input saturation ?
• Model Based
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Exploration as Robust QP

Consider system under probing noise eu(t) during the exploration
phase ∀t ≥ 0 as:

ẋ = f (x) + g(x)(u + eu) (25)

where eu : R≥0 → Rm is a time-varying probing noise,
∥eu(t)∥∞ = supt≥0 ∥eu(t)∥ <∞.
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Tunable input to state safe exploration

• probing noise eu(t) as a matched disturbance,
• a larger safe set Cξ,T ⊂ Rn is considered parameterized by
ξ ≥ 0 such that C ⊆ Cξ,T.
• This larger set Cξ,T should remain forward invariant for all
∥eu(t)∥ satisfying ∥eu(t)∥∞ ≤ ξ to ensure safety during data
collection phase. To that end, consider a function
hξ,T : Rn × R≥0 → R as:

hξ,T(x , ξ) = h(x) + γT(h(x), ξ) (26)

γT(a, ·) ∈ K∞ for all a ∈ R. Then, a larger set Cξ,T becomes:

Cξ,T ≜ {x ∈ Rn : h(x) + γT(h(x), ξ) ≥ 0} (27)

∂Cξ,T ≜ {x ∈ Rn : h(x) + γT(h(x), ξ) = 0} (28)

Int (Cξ,T) ≜ {x ∈ Rn : h(x) + γT(h(x), ξ) > 0} . (29)
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Input to State Safety

Figure:
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• Under saturation
• Learning CBFs, CLFs

• Gaussian process,
• Neural ODEs

• Abruptly/slowly varying environments

• Varying dynamics

• Stochastic dynamics

• Stochastic noise : Excitation noise with probability
distribution.
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