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Introduction: Reinforcement Learning

Reinforcement Learning Architecture
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Introduction: Reinforcement Learning

Reinforcement Learning: A

Traditional Control Prespective

— Model Al Prespective : RL
[ Objective ] [ /Model-free ]

l

Control

Dynamical

Controller Input u(k) System
Agent Actions a(k) { Environment
T State feedback x(k) Reward

State feedback s(k)
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Introduction: Reinf ent Learning

Nonlinear Discrete Time
S m Discrete Time

R es

RL: Discrete time optimal control

X1 = F(xk) + g (k) u(xx) (1)

xx € 2 C R" is the state variable vector

Q being a compact set

u(xx) € U C R™ is the control input vector

f(x) is C! and x = 0 is an equilibrium state such that
f(0) =0 and g(0) = 0.

Note: U(Xk) will be denoted as Ug. @g%’mﬁ[ f!?AA %
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on: Reinf ent Learning

RL: Nonlinear Discrete Time
S i Time

R es

RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
() : R" — R™, that defines for every state xx , a control action:

ug = 7(xk) (2)

® Such mappings — feedback controllers.

® Example: linear state-variable feedback uy = 7(xx) = —Kxk

@ (AN %
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Introduction: mef »rr»mwnt Learning

RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uy = 7(xk):

J (Xk7 uk Z r'\Xn, Un (3)

where r(xp, up) is the utility function defined as:
r(Xn, tn) = X Qxy + ul R u,

DE LORRAINE

. i - definit tri _ QT
Q® symmetric positive semi-definite matrix @ O:RA" %
® R is a symmetric positive definite matrix R = R
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RL: Discrete time optimal control

Cost (given a prescribed
policy ux = m(xk))

Bellman Eq/ Nonlinear

Lyapunov Eq (Recursive):

Hamiltonian:
Optimal Cost:
Bellman principle:

Backwards in Time!!
Optimal control (policy):

Ve(xk) = > r(xn, un), ¥xk
n=k

Vi (xk) = r(xi, uk) + Vi (xk+1)
H(xk, uk, V) = r(xk, uk) + Va(xkt1) — Ve (xk)

V*(Xk) = mirb (r(xk, uk) + Vﬂ-(Xk_H))

IS

V*(xk) = UTE”L (r(%is uk) + V*(xk+1))

o) = g (o )l @
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RL: Nonlinear Discrete Time

RL: Discrete time optimal control

V*(xk) = JPE”;J (r(xk, uk) + V*(xk11))

= min (X,Z—ka + uZ—R ug + V*(ka))

Bellman principle: uel

(DT Hamilton-

Jacobi-Bellman = min (x] Qxx + u] R ux + V*(f(xk) + g(xk) uk))
Equation) ey

Optimal control .
- m*(xk) = arg min (r(xg, uk) + V*(x,
(policy): (x) ugkeu (r (K uk) (Xk+1))
V™ (xis1)

™ () = uf = (=1/2)R1g T (xx) o
Oumn (AN @

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



RL: Nonlinear Discrete Time
S n C Time

DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)
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Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.

Vir1(xk) = r(x, mj(xk)) + Vit (k1) 5 Vj+1(0) =0
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Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.

Vir1(xk) = r(x, mj(xk)) + Vit (k1) 5 Vj+1(0) =0

Policy Improvement

Determine an improved policy O (AN %

=argmin (r(xk, ux) + Vit1(xk+1)) st
uel
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RL: Nonlinear Discrete Time

DT Policy Iteration: Observations

Initial policy must be stabilizing.

Policy Iteration (Howard, 1960; Leake and Liu, 1967) =
® Viia(xk) < Vipa(xx)

® As j — oc:

* Vi(xi) = V*(x)

° 1 =t

Convergence to optimal cost and thus, optimal control policy.
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RL: Nonlinear Discrete Time
lin N e Time

Forward-in-time Learning

Temporal Difference Error (TD error):
ek = r(xe, mx.) + Va(xks1) — Vir(xk) J

® RHS is DT Hamiltonian
e |f Bellman Eq holds, e is zero.
® |inear in x.

® Thus, given a policy 7(x), Least Square based solution at
each time k for ¢, = 0.

@i (AN %
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Introduction: Rei ent Learning

RL: Nonlinear Discrete Time

NN based approximation

Value Function approximation (VFA): Neural Networks
® Value function is sufficiently smooth over compact space
e Consider dense basis set {¢(x)} with basis vector
(Weierstrass Theorem):

$(x) = [p1(x)2(x)..pL(x)] R" — RE

Ve(x) = Y7y wigi(x) = WTo(x) )
Substituting in Bellman TD equation:
ek = r(xi, ) + WTh(xkq1) — WT(x) J
..\ @ (AN
Xy = )"’ w— V() %
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Online Policy Iteration

Initialization
Jjeo0
Initialize with an admissible policy
7x)

!

Value Update
"(xksz,) = Wj];l (P(xp) —d(x,,)
Policy Improvement
7,05 = (U DR @IV ()W,

jej+1 zr}“(x,, )is the optimal policy

No
[ Use ”;H(xk) as the control policy ]—’

w DE LORRAINE \‘.(ﬁ\' \
Figure: Online Pl
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Safe RL Motivations

Conventional RL:
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Introduction: Reinforcement Learning

Safe RL Motivations

Conventional RL:
e Stability
® Optimality: Performance, energy consumption etc.
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n: Re nt Learning
RL: Nonlinear Discrete Time
em e Time

Safe RL Motivations

Conventional RL:

e Stability

® Optimality: Performance, energy consumption etc.
Does NOT:

® ensure SAFETY.
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ent Learning
Nonlinear Discrete Time
S m Di Time

Safe RL Motivations

Conventional RL:

Stability
Optimality: Performance, energy consumption etc.

Does NOT:

ensure SAFETY.

Poses " Threat”

during Exploration: data collection phase.
during Exploitation: learning phase.

Treatment remains different from SATURATION

nearness to safety frontier also important
action at time k may leads to violation at k + /

- 2 @ (AN %
may vary with environment -
unmodelled effects, stochastic etc.
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RL: Nonlinear Discrete Time

Safe Learning

Is this safe trajectory

Model
[ Objective ][ /Model-free ]

1 1

* Policy Evaluation

(Maximisation of Cost function (cumulative
Reward)\

Minimisation of nonlinear HJB)

* Policy Update

(controllerimprovement)

T State feedback x(k) Eﬂﬁz C?AA %
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Control
Input u(k)

Dynamical
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RL: Nonlinear Discrete Time

Safe Learning

iocti Model Pre-defined Safety . .
[ Objective ] [ /Model-free ] constraints Is this safe trajectory

Controller
« Policy Evaluation
(Maximisation of Cost Safety Guarantees
function (cumulative + Control policy Control
Reward)\ safe? Input u(k ;i
Minimisation of nonlinear « Statetransition put u(k) Dynamical
HIB) ‘within safe set? System
+ Policy Update
(controllerimprovement) Input

T State feedback x(k)

Oumn (AN %
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Safe RL: Nonlinear System Discrete Time
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Safe RL: Nonlinear System Discrete Time

System

xk+1 = f(xk) + g(xk)u(xx) (1)

where:
> x, € Q C R” states of the system
u(xx) € U C R™ are the and the control input
U denotes the set of all admissible control inputs

B
>
> f(xx) € R"represents the drift dynamics
> g(xx) € R"™™M is the input dynamics.

=

f(xx) is C! and x = 0 is an equilibrium state such that

f(0) =0 and g(0) = 0.

It is assumed that system (1) is stabilizable on a prescribed %
set 2 € R".
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Definition

The safe set S and its boundary OS can be mathematically defined
as:

S ={x € Q|h(x) = 0}

0S = {x € Q|h(x) = 0}

where h(x) : R" — R belongs to C! and h(x) > 0 represents the
admissible state space that respects the safety requirements.

as @ (AN %

h(x)=0
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Strategy

Definition. A ser S € (1 is control invariant set if
€S8 = el | 1z €S VheZ'
where xy 1 = f(x) + gz )up

with ), € Q C R" and up, € U C R™

Strategy:
Learning control law (sequence of control actions)
» that ensures positive invariant property of safe set S,

« Optimality : performance + energy consumption etc.

. CRAN %
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Barrier Function

Definition
BF candidate (Ames et al., 2016; Brunke et al., 2022; Wabersich
et al., 2023) B,(x) : S — R satisfies the following properties:
®B,(x)>0VxeS
® B,(x) - 0 Vx €0S
©® B, (x) is monotonically decreasing Vx € S

@ (AN %
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Safe RL: Nonlinear System Discrete Time

Barrier Function Candidate

”‘u(-""k)=—lng( yh(z) )

yh(zy) + 1

— 2 @
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Introduction:

RL: N

Control Barrier Function CBF

Definition

Control Barrier functions for DT systems Agrawal and Sreenath,
2017: A function B,(x) : S — R is a CBF on the safe set S and
for the nonlinear DT control system (1) if there exists:

@ locally Lipschitz class IC functions a; and ap such that

. 1
T h ) < By(xk) < a2 (h(xk))

® a safe control input uy € U°, Vx € intS such that
AB;y (Xk41, %) := By (f(xi) + 8(xk) uk) — By (xk) < az(h(x«)) ©

, VxeintS  (4)
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Safe RL: Nonlinear System Discrete Time

Control Barrier Function CBF

These conditions imply:
® 4 maintains the barrier function B,(xx) > 0, Vk € Z* given
By(x0) = 0
® safe input maintains the trajectory of system within the safe
set S if the initial state xg is within S.

Oumn (AN @
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Introduction t Learning
RL: N Di
Safe RL: Nonlinear System Discrete

Explc

Safety Aware Control design

Modified Cost
Classical cost-to-go modified and augmented with a CBF

candidate as:

o0 o0
min  Js (xk, 1) = 3 rs(Xny Un) = 3 xT Qxn + u] R up + B (x5)
uey n=k n=k

B,(x) : S — R is augmented utility function rs(x, ux) as:

rs(xk, uk) = kaka + ukTR uk + By (xx) (6)

The candidate CBF B,(x) is sensitive to a coefficienfry that- A %
models the relative importance of the CBF to the utifity fun %

GDR MACS Workshop on Data Driven Control & Analysis
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Safe Admissible policy and strict interiority

Definition
Safe admissible control policy: U? = UNU*°

Definition

Strict interiority of initial condition:
The initial condition of system (1) remains strictly in the interior of
the safe set S, i.e. xg € intS.

Assumption
U=UNUS#D
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Safety Analysis

Given an arbitrary admissible control policy u™)(x;) € U? (denoted
as uy ), if there exists a positive definite value function W(x) € C!
on €2 such that

2 (f(xk) +glau) — X") "v2 Wi (f(Xk) +g(xe)ug) — Xk)
+ VW] <f(Xk) + g()ult — xk))

+ (XkTQXk + (u,((l))TRu,((l) + Bv(xk)> -0

and W (xo, u5)) = Js(0, ug ).

Then, W (x, u,(<1)) is the value function of the system for all

k =0, ...,00 applying the feedback control input u,((l) and %

W (xk, u(xk)) = Js(xk, u(x«))-

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



Definition
G-SHJB Generalised Safety-aware Hamiltonian Jacobi Bellman
(G-SHJB) for DT systems

(1/2)AxTV2W(x)Ax + VW(x)T Ax
+xTQx + u(x)"Ru(x) + By(x) =0
(7)

Ax = f(x) + g(x)u(x) — x

O OELORRAINE \‘.( f\l A %
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Introduction: Reinf ent Learning
L: Nonlinear Time

: Nonlinear System Discrete Time

ati Contir -time s

® The G-SHJB with boundary condition can be used to solve
infinite-time problems.

® Given an admissible control input, solve G-SHJB to obtain the
value function W(x)

® Then, W(xp) to calculate the cost of the admissible control in
Js .
However, the objective is to improve the performance of the
system and guarantee safety over time by updating the control law.

O (AN @
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G-SHJB Hamiltonian
H(x, W(x), u(x), By(x)) =
(1/2)Ax"V2W(x)Ax + VW(x)T Ax (8)
+ xTQx + u(x) T Ru(x) + B,(x)

Policy Improvement

OH' (x, W (x), uli+1), B,(x))
8u(i+1)
g7 (x) [VW + v2WO(f(x) — x)
[gT(x)V2Wg(x) + 2R|

g+ — —
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Bounded CBF at each step

Consider the policy improvement step (9) with corresponding
control policy sequence {u,((')}:i} ={u}, u3.. u,(('H)} and
corresponding sequence of value functions due to sequential
minimization {W) (xe, V=it = (W™ w®  w ity
Then, the CBF is bounded at each sequential step i.

@ UNIVERSITE
DE LORRAINE

' @
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Invariance of Safe Set

Consider B, (x), Safety aware cost, and the control policy obtained
through sequential steps (9) , then the safe set S is invariant along

the system trajectories.
That is, if the initial state lies within the interior of safe set S, i.e.

Xg € intS, then xx € intS Vk € ZT.

Oz (AN %
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Stability analysis

Assuming x = 0 is the equilibrium, within the safe region D C R,
the CBF candidate B, (x), cost to go and consider the policy
improvement step (9)

with corresponding control policy sequence {uk },+1

={ ui, u,% u,(('H)} along with corresponding sequence of positive
defin/te value functions due to sequential minimization

{W,E' (i, uf) }iEt = {W(l) W(2) W('+1)} , then the control
inputs obtained from policy sequence asymptotically stabilizes the
system within the safe region D.

<
[ UNIVERSITE f
AWIE’) g _XIZ-QXk g _)\m|n(Q)”XkH2 @nzmnnmz ?AA %
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Optimality Analysis

Given an initial admissible control u2 € U? , solving G-SHJB in an
iterative manner and improving the control law using (9), the

sequence of solutions i.e. sequence of value functions W,E') and

sequence of control laws u,((') converge, respectively, to the optimal
value function W, and corresponding optimal safe control law uj,

ie. WY = Wy and ul) — ut.

Oz (AN %
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L: Nonline e Time
Safe RL: Nonlinear System Discrete Time

Data Collection from

01to N second Pollwlm))_[‘ovement

L/

v
Uipy
Policy Improvement Value Update

System

ug ¥

Behavior Policy

-
Uipy = U

. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr R MACS Workshop on Data Driven Control & Analysis



Off-policy Approach

Off-policy Equation

Xk41 = fi + gku;(j) + gk (uy — U;(j)) (10)

e Behaviour policy is a safe policy that is applied to the
system to execute data collection under various scenarios
including those that remain close to boundary of safe set.
® Target policy is the policy that is improved towards the
optimal policy using the data collected.
Oz (AN %
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Off-policy S-GHJB

The successive differences of value function W' along an off-policy
based system trajectory (f, g, ul), u) can be derived as:

W,Si) W,Ei) =— kaka — B (xk) — u,((i)TRu,((i)

+1
- 2u,(<'+1)TR(uk = u,(('+1))

Oz (AN %
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(12)

V.

Oz (AN %
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NN based expression Off-policy G-SHJB

el = QDT (x11) — AT 0 (xk) + (XZ Qxc+ o) Ruf) + By(x,

g
N—

+25 00w () (13)

@ (AN %
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Least Square Problem: W®TH() — y()
o WIDT ¢ RIx(LetmLa) 1o W(DT — {Q(') Qg

e independent data vector H() ¢ R{LetmLa)xN 5q

HO = [ ) |wherein j & (1, ...N)

W = 10,2000, .. 20mW(x)VSD | € RULETmLD)
e dependant data vector Y() € RPN as

y() = [ (i ),yz( ),. ,y,(v")} wherein the data collected
Vk € (1,...,N) is given by the observed reward (augmented

utility) /E) = —rs(,'i- O (AN %
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RL: Nonline
: Nonlinear System

Off-policy temporal difference

Least Square Solution

W T — (H(f) H(f)T) BT OI%0) (14)

The unique solution exists if the number of points of data
collection is greater or equal to the order of approximation or
N > (Lc + mLa).

@ (AN %
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Learning
T
] Nonllnear System Dlscrete Tlme

Algorithm

Algorithm 1: Off-policy safe policy iteration

1: procedure DATA COLLECTION

2: Employ an initial noisy stabilizing control policy &% = U NU*
until number of points of data collection is greater or equal to the
order of approximation or N > (Lc + mLa).

3: end procedure

4: procedure OFF-POLICY PoOLICY EVALUATION AND
IMPROVEMENT

5: Policy Iteration Solve for W and terminate the process when the
following approximation error is within a prefixed convergence
threshold € , chosen sufficiently small. ijzl ‘ W — Wi_lJH <e

6: Update If not, let / < i+ 1 and go to step 5.

7 Application Update the controller using learned weights and

apply safe optimal policy to the system. O f'?A'\ %
8: end procedure
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Simulations

1 Ts vig.Ts 0
Yk+1 10 Vi
& bC,—aC
Viar | _ [0 14 (=Gen) Ts (2525 — vig) Ts| | e
Dk+1 0 0 1 Ts bk
bC,—aC,
Y41 _0 ( R =2 T, 0 1 Yy |
- 0 ;
& 0
M T+ | | Tsde (15)
_a% 0
e XAV
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Simulations

Safety aware Reward/Utility function

Y(x1,k + Ymax)
Y(x1,k + Ymax) + 1
/og( ’7(_X1,k F )/max)

Y(=X1,k + Ymax) +1

rs(xk, uk) = x¢ Qx + uy Ruy — m(log(

)+

)

® y, and vy are lateral displacement and its velocity
® ynhax expresses the absolute value of maximum safe
displacement from the center of the road.
® ¢, is error yaw angel and ) is its derivative,
uy is the steering angle, O f'.?A" %
di is the desired yaw rate obtained from the curvature of the
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Simulations

Actor and Critic NNs

d(x) = [X12 X22 X32 XE X1X2 X1X3, X1X4 X2X3
xoXxq x3xq (x1 — )/max)2 X14, X24]

V(x) = [x1 x2 x3 X4]T

@ (AN %
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Safe RL: Nonlinear System Discrete Time

Lateral displacement zoomed

X ;safe =
* X4 unsafe

* X1 max

X4, min

04 1

~
_0'60 1 2 3 4 5 6 7 8 9 10 AN %

Time (sec)
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Safe RL: Nonlinear System Discrete Time

Lateral displaceme

08 1 7

Ar N ’

I @
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Safe RL: Nonlinear System Discrete Time

Lateral displacement zoomed

005 o s 02 s

@ (AN %
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Safe RL: Nonlinear System Discrete Time

Other states

0
-20 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2 T T T
—
i
-0.2r 1
;
s SN @
Time(s)
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Safe RL: Nonlinear System Discrete Time

Conclusions

Model free approach (data based)

Optimality

Stability

Safety during operation—OK!
Safety during EXPLORATION 7?7?77

°
>
8
L
[«5)
o
3.
(2]
0,
=
[¢]
°
=B
=
<
~
~
~
~
~
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Safe RL: Nonlinear System Discrete Time

BEHIND SCENES!!!

Oumn (AN %
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Safe RL: Nonlinear System Discrete Time

Safety FAILURE during Exploration!!!!

10

@umr. (AN %
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Safe RL: Nonlinear System Discrete Time

Safety FAILURE during Exploration!!!!
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Safe RL: Safe Exploration, Continuous-time systems
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System under exploration

Under exploration noise

x = f(x) +g(x)(u+e) (16)

x = f(x)+ g(x)u+ p(x)w (17)

Key Idea: The system (16) is input-to-state stabilizable if and only
if there exists an ISS-CLF.

@ (AN %
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Safe Exploration
Robust QP Problem

Find the control us,se and the relaxation variable § that satisfy

. 1
min E(u;fEUSafe + €5T6)

Usafes0

st. Fi=a1+bi(u+ usae) +0 <0
Fo=ay+ bp(u+ usare) <0

(18)

with
a1 = LeV(x) + LV () + a(x)
ay = L¢By(x) + LgBy(x)e(t) — ap(h(x))

by = LB, () Oumn (AN @




Introduction: R
RL: Nonli
Safe RL: Nonli S

Safe off-policy

x = f(x) + g(x)[uo + € + Usare] (19)

The initial policy ug random is randomly generated then by adding
the solution of the Robust-QP problem us,fe, Uy random is modified
to ensure that the resulting control policy ug is both safe and
admissible. Then, above can be rewritten as

x = f(x)+ g(x)ui + g(x)vi (20)

where vj = up + € + Usafe — Uj = Us — u; and Upoisy, = Ug + €.

@ (AN @
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Introduction

The weights 6; and 0,- can be obtained by solving the following
least-squares (LS) equation:

&N [Vec(?f)} _ EN (21)

(22)

where

[(x(t+ T)) — &(x(t))]" !
i(t) = |:2[[UW(R ® In,) — how (U7 R ® I’Vﬁlm C‘Q(f\i) %

DE LORRAINE
t+T
~ _ A T

; — 6 ). ec( ) — g X O (X)g
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Safe RL: No r N ete Time
Safe RL: Safe Exploration, Continuous-time systems
S = R d bust Control Pr

End to End Safe Learning-CT

Initialization: i = 0 Safe Initial Policy
U, random initial weights
v

safe Initial Policy:
Solve the Robust-QP problem for i,z and e = 0, and adjust the initial control policy to satisfy the stability and the safety conditions

Up = Uorandom + Usafe

v
[ Exploration noise: ] safe Exploration

Let Upoisy = U + e

Safetyand Admissibility Filter:
Solve the Robust-QP problem for i,z and adjust the exploration policy to satisfy the stability and the safety conditions
U =g + € + Usgpe

Data Collection:

Compute Ly, Iyw, [#(x(t + 1)) — #(x(®))] and [T[q(x) + B, (0)]dt.

Policy Evaluation and Improvement: Safe Policy Iteration

N _ v | vec(C;
Solve C; and U; from 6} (F T)
vec(U;")

w @

[ Use u* = U;¥(x) as the controlinput
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Introduction: R
RL: 1
Safe RL: Nonlir
: Safe Exploration, Continuous-time systems
loration as axec b Co | Problem

Safe Initialization, Exploration, and Exploitation
(operation)

Jet engine surge and stall dynamics

Consider the following jet engine surge and stall dynamics

o= 035
; ; a= 14
X1 = —ox? — axy (2x, + x3) b =05

Xy = —ax? — bx3 — (u+ 3x1x5 + 3x7)
* xq isthe normalized rotating stall amplitude

* x, isthe deviation of the scaled annulus-averaged flow with —1.1 < x,< 0.45
* uisthe deviation of the plenum pressure rise and is considered as the control input

Initial states: xy = [1 —1]T
Initial Actor Weights: Tp=[-3 0 0 0 0 0 0 0 0 0 0]

Probing noise: e(t) = 2Y w X sin([137 11131517 19 21 23 2527 29] X t)
w random Gaussian noise

VYV

' @
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orks

Exploration Phase

15 T T T
X . i
1k 2 (Safe) i
- - = -Boundaries ‘I 10
| '
5 4
i
i
i
g 3 op
s
0+
L L L L n L -15
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (sec)

Time (sec)
Fig.1 Trajectory of x, during exploration

Fig.2 Exploration policy under p@A{\ W
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Safe RL: Safe Exploration, Continuous-time systems

Example

Exploitation of Learned Policy

—— x5 (Unsafe)
—_— (Safe)
- = = -Boundaries

e S e e S TR e T
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Safe RL: Safe Exploration, Continuous-time systems

Conclusions

Optimality

Stability

Safety during operation—OK!
Safety during EXPLORATION —-OK!
Initial admissible policy —OK!

e BUT,

® Tracking?

® Exploration Quality ?
® |nput saturation ?

® Model Based
Oumn (AN @
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Safe RL: Safe Exploration, Continuous-time systems

Kanso, S, Jha, MS, Theilliol, D. Off-policy model-based end-to-end
safe reinforcement learning. Int J Robust Nonlinear Control. 2023;
1-26. doi: 10.1002/rnc.7109
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Safe Exploration as Relaxed Robust Control Problem
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Safe Exploration as Relaxed Robust Control Problem

Exploration as Robust QP

Consider system under probing noise e,(t) during the exploration
phase Vt > 0 as:

x = f(x) + g(x)(u+ eu) (25)

where e, : R>o — R is a time-varying probing noise,
leu(t)lloc = supeo [leu(t)]| < oo

Oumn (AN @

Dr. Mayank S JHA, CRAN, mayank-shekhar.jha@univ-lorraine.fr GDR MACS Workshop on Data Driven Control & Analysis



einforceme

Nonlinear D\

Safe RL: Saf
Safe Exploratiol
On g

Tunable input to state safe exploration

® probing noise e,(t) as a matched disturbance,

® a larger safe set C¢ 7 C R" is considered parameterized by
§ > 0 such that C C C¢ 7.

® This larger set C¢ T should remain forward invariant for all
lleu(t)|| satisfying |leu(t)|loo < & to ensure safety during data
collection phase. To that end, consider a function
h&T cR™ x RZO — R as:

he r(x,€) = h(x) + 1 (h(x), ) (26)
y1(a,-) € Ko for all a € R. Then, a larger set C¢ v becomes:
Cer = {x € R" ¢ h(x) +71(h(x),8) = 0} (27)

ICer = {x € R": h(x) +yr(h(x),&) = Omkvm f
Int (Ce.1) £ {x € R": h(x) +yr(h(x), &) > 0} %9
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Input to State Safety

Input-to-State Safety

Adding probing noise € to the control input leading to the
following dynamics:
=)+ +6€)

matched disturbance

The probing noise is assumed to not destabilize the system,
and:

€l = ess sup |e(2)]
teR;

20

Input-to-State Safe (ISSf) [Romdlony and Jayawardhana, 2016], [Kolathaya et al., 2018])
Given C c X the 0-superlevel set of a continuously differentiable function h: X — R, the system
is ISSf with respect to C if there exist € € R, and i € k such that for all € € [0,€], the set C. € X
defined by:

C={x €X | h(x) + u(|€]o) = 0}
is forward invariant.

Oz (AN %

Figure:
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Safe Exploratlon as Relaxed Robust Control Problem
nd p

Exploration near safety boundries

Tunable Input-to-State Safety Control Barrier Function

/(Tunable Input-to-State Safe Control Barrier Function (TISSf-CBF) [Alan et a“””)ﬁ

The function h is an TISSf-CBF on C if there exist an extended k., function ¢ and : R - R, that
is continuously differentiable on R such that:
6h(x) 6h(x) 1 dh(x)
sup fO) + gGou FCo) ‘ g(X) a(h(x))
forallx €X,
ar
a(r) >0
\for allr e X. )
Solve the QP problem for up to marginally
adjust the exploration input:
Safety during . r
Exploration umqlf EuQPM Ugp
s.t.
Condition of TISSf-CBF is satisfied
LY GEgRRANe \‘( Al\ %

Figure:
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Safe Exploratlon as
On going

Exploration near safety boundries

TISSf-CBF vs 1SSf-CBF

6h(x) dh(x)

dh(x)

fQ) +——=g(u > —a(h(0) + = 9(x )”

A(h( )) H

Why are we using TISSf-CBF instead of ISSf-CBF?

In ISSf-CBF, 1 is a constant In TISSf-CBF, 1 is a function of h(x)
I Small A values | | Large A values | Near safety Within the safe
boundaries set
More Less i !
conservative conservative | h(x) is small | | h(x) is large |
! ! 1] ]
Compromised Violation of | A smaller | | Aincreases |
data quality Safety ) )
More Less
conservative conservative %
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Introduction:

Simulation and Results

= ooiw
Blue curve: Ais a function of h(.)
h,(pX)=X, +2 and h,(pX)=2—X,

: Ais a large value
Black curve: 1 is a small value

Red curve: Exploration input is not
adjusted

: Exploration input is unsafe | h . . L L . I N s

. . 0 05 1 15 2 25 3 35 4 45 5
: Exploration input is safe Time (s)
Trajectory of x, during exploration for different values of 1
Ny N X\ Y %

0
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Introduction:

Simulation and Results

0.6

04

0.2

Exploration Exploitation

z
z1 (A fix)
1 (A tunable)

Exploration Exploitation

5
Time (sec)

10

Fig 1: Trajectory of x; during exploration and

exploitation

Time (sec)
Fig 2: Trajectory of x; during exploration and

exploitation
w DE LORRAINE b.(ﬁ\' \ %
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On going works and possible perspectives
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On going works and possible perspectives

Under saturation
Learning CBFs, CLFs

® Gaussian process,
® Neural ODEs

Abruptly/slowly varying environments

Varying dynamics

Stochastic dynamics

Stochastic noise : Excitation noise with probability
distribution.

O (AN %
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