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Introduction

Model-Predictive Control (MPC)

Jacques RICHALET: Model predictive control (MPC) (Automatica, 1978)
Interesting reference: La commande prédictive a gagné la partie
(Mesures, avril 2005)

MPC: Popular control schemes where MODELS are used for predicting the future
behavior of the system over a short time window, the horizon.

Key réles of various OPTIMAL CONTROL techniques: LQR, Dynamic
Programming, Pontryagin’s maximum principle, ...

Reset after a short time lapse # traditional optimal control
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Introduction

Predictive Control without a Model

@ Models via Artificial Neural Networks (ANNs) = Machine-Learning

@ Various theoretical frameworks (data-driven) — Popular in the Western
academic world:
J. Berberich, F. Allgéwer, Annual Rev. Contr. Robot. Autonom. Syst. 2025.

© Via the ultra-local model associated to model-free control. Large number of

publications, especially in China, often with concrete applications.
A most recent example:

G. Wu, P. Guan, F. Huang, Z. Long and J. He, Robust Speed-Stator Flux Tolerant Predictive
Control for PMSM Drives With Parameters Disturbance Faults Diagnosis, IEEE Sensors J., 25,
34840-34849, Sept.15, 2025.
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MFC: Model-free control

MFC ultra-local model

Ultra-local model, only valid during a short time lapse,

y=F+au (1)

for most input-output systems, under weak assumptions:
@ «: constant parameter such that the 3 terms are of same magnitude = «
does NOT need to be precisely estimated
@ F': the whole information on the unknown system (including the external
perturbations)

@ Data-driven estimate:
6 t
Fest(t) =~ | [(1=20))(0) + ao(t — 0)Au(0)] do

t—T

where 7 is small. In practice: digital filter.
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MFC: Model-free control

MFC: Intelligent P controller

Intelligent P controller (iP):

_ Fest =" + Kpe

a
@ y*: output reference trajectory
@ ¢ =y — y*: tracking error
@ Kp: tuning gain
4
6+KPe:F_Fest%O
Y

SIMPLE GAIN TUNING for local stability.
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Optimal control via Euler-Lagrange equation

MFPC: Model-free predictive control

Short time lapse = Eq. (1) becomes y = a + au: elementary flat system, where
F =~ a approx. const., y flat output.
Lagrangian (cost function):

. 2
—da
L= (y - ysetpoint)2 + Mz = (y — ysetpoim)z + (y o )
Criterion: J = [V Ldt
=Euler-Lagrange equation: % — %% =0
= non-homogeneous linear ODE (independent of a): § — a?(y — ysetpoint) = 0
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Optimal control via Euler-Lagrange equation

Optimal solution: y*(7) = ysetpoint + 1 €xp(cut) + ¢2 exp(—aut)
Boundary conditions: y(;) = yi, y(tr) = Ysetpoint

Y
o — Yi exp(—atf) — Ysetpoint eXp(_atf)
! exp(at;) exp(—aty) — exp(—at;) exp(aty)
eXp(atf ) (y -y setpomt)
c=-

exp(at;) exp(—aty) — exp(—at;) exp(aty)

Subdivide the time interval [ro, tn[, t0 < -+ < tx < fry1 < --- < ty. On each time
interval [, #x+1[, repeat the above procedure.
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Three examples

From the MPC literature

@ Chemical reactor (AIChE 2003 (chemical engineering)): linear approx. around
operating point.

© Two tanks (Europ. J. Contr. 2024): neural models (machine learning) &
reinforcement learning.

© Avoidance of unexpected obstacles (IFAC PapersOnLine 2021): neural
models (machine learning) & reinforcement learning.
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

What is reinforcement learning (RL)?

Reinforcement Learning (RL) is an area of machine learning where algorithms
learn to make decisions by trial and error, ultimately striving to maximize some
cumulative reward. This technique draws inspiration from how humans and
animals learn from feedback, adapting to complex, dynamic environments over
time. Reinforcement Learning stands out in its capability to tackle problems where
decision-making is sequential, and the consequences of actions unfold over time.

RL which requires ridiculously large numbers of trials to learn any new task
(Yann LeCun)
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A chemical reactor
Two tanks
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A chemical reactor

L\’/— ) F T,c
>

(1) Well-stirred reactor
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A chemical reactor
Two tanks

Numerical experiments Autonomous robot

= 71:07(:;02;“) —koexp (—#)c
T = 7%(7502;” - ?—Cljko exp( R£)c+ o, (T.—T) 2)
) — FoF
7w
¢ (resp. h): fluid concentration (resp. height). Both measured. Control variables: F

and T..
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Chemical reactor: MFPC

(4) ¢ (- black) B) T (6) h (— black)
and its set- and its set-
point (- - red) point (- - red)
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Two tanks

(7) Two tanks

sthy = u—kiv/hi
sohy = kiv/hy — kav/ha

u > 0: control variable, h,, . = 1,2, 0 < h, < 10: water level, k, and s,: constant
parameters.
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Numerical experiments
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Autonomous robot: Dubins’car

y=ui(l + p)sin(uz)

{)’c = uj cos(uz)

@ x, y: Cartesian coordinates of the middle of the rear axle;
@ Control variables: u; (linear velocity), 8 = u; (angle with x axis);
@ p (—0.5 < p < +0.5): uniformly distributed piecewise-constant perturbation.
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A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Autonomous robot: MFPC

Inputt Input2

Output : x Output2:y Outputs (xy)

(14) y(0) (15) (x,y)

MFPC & Al Data-driven control and analysis of dynamical systems



A chemical reactor
Two tanks
Numerical experiments Autonomous robot

Perturbed autonomous robot: MFPC

Inputt Input2 5 Perturbation

Output : x Output2:y Outputs (xy)

(21) (%)
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Conclusion

Today’s Al & LeCun’s program

Remarkable advances in modern Al (e.g. Generative Al) often rely on
@ models striving for comprehensiveness (e.g. LLMs: Large Language Models),
@ their associated machine learning mechanisms.
Yann LeCun’ program:
@ Machine learning sucks
@ | do favor MPC over RL. I’'ve been making that point since at least 2016

Analogy with program in math. research — Ex. Langlands program
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Conclusion

Today’s Al & LeCun’s program

Our techniques comply with those program = requirements:
@ Supremacy of predictive control.
@ Reduced réle of machine learning.
@ Abandon of reinforcement learning in favor of model predictive control.
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Conclusion

Energy& Infrastructure

Brad Smith, Vice Chair & President of Microsoft, September 2024:

The capital spending needed for Al infrastructure and the new energy to power it
goes beyond what any single company or government can finance.

Our more subtle techniques should be less greedy.
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Conclusion

Today’s references

@ C. Join, E. Delaleau, M. Fliess, Model-Free Predictive Control: Introductory
Algebraic Calculations, and a Comparison with HEOL and ANNs. Joint IFAC
Conf.: SSSC, TDS, COSY, Gif-sur-Vette, France, 30 June-2 July 2025.
arXiv:2502.00443

@ C. Join, M. Fliess, Avoidance of an unexpected obstacle without
reinforcement learning: Why not using advanced control-theoretic tools?
IEEE 2025 - 13th Int. Conf. Syst. Contr. (ICSC), Marrakesh, Morocco,
October 22-24, 2025. arxiv:2509.03721
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