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Introduction & Motivation

About Me

m Affiliation: LS2N, Ecole Centrale Nantes

m Position: Ph.D. Candidate in Control
Theory

m Project: Marie Curie DENSE Network

m Research:
m Nonlinear adaptive and robust control

m Data-based methods
m Applications to FOWTs
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Introduction & Motivation

Motivation — Why this project is important

Unmodeled —
Dynamics Uncertainties

® Many real systems are nonlinear,
with unknown/uncertain [ Disturbances }—»[Real-WOrld SystemsH Complexity }
dynamics and disturbances.

Y
m Robust control exists (Hw, [ Difficult to obtain (Accurate) Model }
robust MPC, sliding mode control,

etc.), but they require a model. y
Key Question:

How can we design controllers
without relying on models?

~

[Data-based Control — Next Section}
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Introduction & Motivation

1E|
Control Systems

m This aligns with the IEEE Control Systems Roadmap. Society

m Emphasizes the importance of data-driven control
strategies for complex, uncertain, and large-scale systems.

m Highlights the promising future of such approaches in

L CONTROL FOR
control applications. SOCIETAL-SCALE

CHALLENGES:
ROAD MAP

2030

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE



Background: ISMC & Neural Approximators

Roadmap

2. Background: ISMC & Neural Approximators

N - LS2N - DENSE October 1,



ground: ISMC & Neural Approximators

Why ANNSs in Control?

m Thanks to the Universal Approximation Theorem', the use of Artificial Neural Networks
(ANNSs) has grown across scientific fields, and control theory is no exception.

m System identification? m Learning optimal control laws*
m State estimation and observers> m Model predictive / constrained control’

m Inverse dynamics / feedforward control

1. Scarselli et al., Universal approximation using feed-forward neural networks: A survey of some existing methods, and some new
results, Neural Networks, 11(1), 15-37, 1998.

2. Kuschewski et al., Application of feedforward neural networks to dynamical system identification and control, IEEE Trans. Control
Systems Technology, 1(1), 37-49, 1993.

3. Hunt et al., & Gawthrop, P. J., Neural networks for control systems—a survey, Automatica, 28(6), 1083—1112, 1992.

4. Akesson et al., A neural network model predictive controller, Journal of Process Control, 16(9), 937-946, 2006.

5. Chen et al., Approximating explicit model predictive control using constrained neural networks, Proc. ACC, pp. 1520-1527, 2018.
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Background: ISMC & Neural Approximators

Why ANNSs in Control?

Universal Approximation Theorem

The Universal Approximation Theorem states that any continuous function can be approximated
arbitrarily well by a neural network with at least one hidden layer with a finite number of weights.

Approximating sinx

1.0
0.54
= 0.0
_05 4
~1.0 —— True Function
—— NN approximation

3 -2 1 0 1 2 3 Input Layer Hidden Layer Output
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Background: ISMC & Neural Approximators

Objective & Approach

Challenge: NN is not enough for control X

m NNs approximate with nonzero error.

m Approximation quality changes based on
the input and tuning.

m Difficult to guarantee stability.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025



Background: ISMC & Neural Approximators

Objective & Approach

Solution: Data-based ISMC v

Challenge: NN is not enough for control X

m NNs approximate with nonzero error. m Use NN to learn functions online.
m Approximation quality changes based on m Adapt all NN weights with
the input and tuning. Lyapunov-based laws.

m Difficult to guarantee stability.

Key idea: NNs for modeling + ISMC for robustness
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Background: ISMC & Neural Approximators

Objective & Approach

v Summary of objective and contributions
A robust data-based ISMC approach is developed for nonlinear systems with unknown

dynamics. This method employs online NN approximations for both the drift and input
functions.
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Objective & Approach

v Summary of objective and contributions

A robust data-based ISMC approach is developed for nonlinear systems with unknown
dynamics. This method employs online NN approximations for both the drift and input
functions.

A Lyapunov-based adaptation law is proposed for updating all NN weights, including
input-to-hidden and hidden-to-output connections.
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Objective & Approach

v/ Summary of objective and contributions

A robust data-based ISMC approach is developed for nonlinear systems with unknown
dynamics. This method employs online NN approximations for both the drift and input
functions.

A Lyapunov-based adaptation law is proposed for updating all NN weights, including
input-to-hidden and hidden-to-output connections.

Closed-loop stability formally established.
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Background: ISMC & Neural Approximators

Objective & Approach

v Summary of objective and contributions

A robust data-based ISMC approach is developed for nonlinear systems with unknown
dynamics. This method employs online NN approximations for both the drift and input
functions.

A Lyapunov-based adaptation law is proposed for updating all NN weights, including
input-to-hidden and hidden-to-output connections.

Closed-loop stability formally established.

Application to FOWT collective blade pitch.
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Problem Formulation & Proposed Solution

Problem Formulation

Nonlinear System
X = ?(x’ t) + g(x’ t)u’
y = s(x,1),

where x € X C R" is the state vector, u € R is the control input, y € R is the output.
The functions ¥ (x, t) and G(x, t) are assumed to be: smooth, unknown, bounded, Vx € X.
A sliding mode is established when s(x,¢) = 0 with x € X.

Dynamics of the Sliding Variable

_0s.  Os os

ST T o

Objective: enforce s(x,t) = 0 despite uncertainties.
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Problem Formulation & Proposed Solution

Integral Sliding Mode Control

To achieve this objective and compensate the effect of uncertainties from ¢ > 0, a robust controller
can be designed in spite of perturbations and uncertainties. According to Utkin®, the control law is
defined as

u=ug+u,

ug = —ks, u; =—psign(o)

® ug handles nominal dynamics.

m u; enforces robustness against disturbances.

V. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions, CDC, Kobe, Japan, 1996, pp.
4591-4596.

ECN - LS2N - DENSE October 1,



Problem Formulation & Proposed Solution

Integral Sliding Mode Control

Integral Sliding Variable

o=5+2z

where s = ¢ and z is defined such that
z(0) = =s(0) (i.e., o(0) = 0) and

z=~[f()+8()uo].

This formulation guarantees that the sliding motion with respect to o starts from the initial time,
eliminating the reaching phase typical of conventional sliding mode controllers".

TV. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions, CDC, Kobe, Japan, 1996, pp. 4591-4596.
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Problem Formulation & Proposed Solution

Data-Based Function Approximation

Designing an ISM control requires system dynamics . However, due to their complexity and strong
aerodynamic-hydrodynamic coupling, many real-world systems like FOWTs are difficult to model.

Functions Approximation

f() = W}rhf((b}s) + &y,
g() = W;hg(d);,'—s) + &g,

Wi, We, @f, ®g: the ideal NN weights. &7(x), £4(x): the approximation errors.

* Pan, C. Yang, L. Pan, and H. Yu: Integral sliding mode control: Performance, modification, and improvement, IEEE Transactions on

Industrial Informatics, vol. 14, no. 7, pp. 3087-3096, 2018.
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Problem Formulation & Proposed Solution

Data-Based Function Approximation

Sigmoid Activation Function

1
h = —
(@) 1+e

-

Chosen for smooth derivatives and fast
online learning.

. Function value
— (@)
)
0.5
,.// RRRTS ...«
—6 —4 -2 0 2 4 6

Figure: The sigmoid function A(-) (solid blue line)
and its derivative /(-) (dashed red line), illustrating
smoothness and boundedness properties desirable for
stability analysis in control systems.
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Problem Formulation & Proposed Solution

Assumptions

Boundedness Assumption

The functions f(-) and g(-) are continuous and bounded, satisfying

FC) € [=fmfuls 8C) € [8m.gm] Vxe X

where fi,, far, 8m, and gps are positive but unknown constants.

v

Weights Boundedness

The NN weights Wy, W, ® ¢, and @, as well as the corresponding approximation errors & ¢ and
&g, are assumed to be bounded. That is, there exist positive constants Wy, W, @7, @, &7, and &,
such that

IWell <Wp, sl <Dy, egl <&y,

”Wg” < Wg, ”q)g” < q_)g, |8g| <&

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025



Problem Formulation & Proposed Solution

z—dynamics with NN approximators

Weight Approximation Errors

Key Idea

Neural Network (NN) approximators are applied within the ISMC framework. Since the true
functions f(-) and g(+) are unknown, the dynamics of the integral term z are approximate.

Approximated z—Dynamics

2 = —(f() + g() u()) data—based approximation

= —(W}hf(ﬁ)}s) + W;hg(&);s) uo)

October 1, 2025
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Problem Formulation & Proposed Solution

Theorem

Theorem

Consider the nonlinear uncertain system s = f + g u, controlled by the law u = —ks — p sign(o),
where o = s + 2, with 2(0) = —s(0) and 2 being derived from 2 = —(f(-) + &(-)uo), updated
according to the adaptation protocols given in the sequel.

If the assumptions hold, and the NN estimators employ the logistic sigmoid activation function
h(a) = lﬂ%, with derivative & = h ro(l- h ), then the sliding variable remains at o(¢) = 0 for
allz > 0.

Takeaway

In other words: the controller ensures stability of the closed-loop system , thanks to NN approximation
and ISMC.
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Problem Formulation & Proposed Solution

Lyapunov candidate

Considering the following Lyapunov candidate function

V= 20+ S e(WITFWy) + 3 u(Wgr; W)

2 2 88

e | IO
+ Etr(cb}@flcbf) + Etr(cbz,-@glég)

Then, differentiating with respect to time, and substituting the control input and . . .
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Problem Formulation & Proposed Solution

Adaptation laws

The NN weights are proposed to be updated based on the adaptation laws as

Adaptation laws.

Ffa'fzf,

=-T a'kslAlg,
(Df G)fo'(thf) ,
g:—® O'ks(W h )

Wy

LetT's,I'y,07, 0, > 0 be constant learning-rate matrices.
These update laws ensure online adap-tation of the NN parameters in response to the evolving
system state.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025



Problem Formulation & Proposed Solution

Sketch of Proof 1/2

Sketch of Proof 1/2.

Il Using equations, we reach

A

F=§+2= (W}hf —W;izf) + ks ( gﬁg - Wghg) -p sign(a')(W;hg +&g) +&f

Substitute the update laws; the cross-terms cancel by construction.

To guarantee the negative definiteness of V, the gain p is chosen to dominate the remaining
terms.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025



Problem Formulation & Proposed Solution

Sketch of Proof 2/2

Stability Result

Therefore, under the proposed gain design, the Lyapunov derivative satisfies
V< -nlol, n>0.

Since the integral sliding variable is initialized with Z(0) = —s(0), it follows that o-(0) = 0, and
thus the sliding condition is enforced from the initial time instant and maintained for all # > 0.
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Application: Floating Offshore Wind Turbines

Why Floating Offshore Wind?

Problem
Wind resources mainly in > 60 m depth
Fixed-bottom turbines costly & impractical

Solution
Floating platforms — access stronger
offshore winds

ECN - LS2N - DENSE October 1, 2025
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Application: Floating Offshore Wind Turbines

Why Floating Offshore Wind?

Problem
Wind resources mainly in > 60 m depth
Fixed-bottom turbines costly & impractical

Solution

Floating platforms — access stronger
offshore winds

Challenges

High DOFs — oscillations, negative
damping

Wind-wave interactions — complex control

Standard pitch control is insufficient

M. Sarbandi (Data-based ISMC)
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Application: Floating Offshore Wind Turbines

The Challenge of Floating Wind Turbines

Why is Control Difficult?

m Floating platforms introduce more degrees of freedom (DOF).
m Complex coupling between wind, waves, and structure.

m Accurate models are hard to obtain and maintain.
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Application: Floating Offshore Wind Turbines

The Challenge of Floating Wind Turbines

Why is Control Difficult?

m Floating platforms introduce more degrees of freedom (DOF).
m Complex coupling between wind, waves, and structure.

m Accurate models are hard to obtain and maintain.

Our Objective

Design a controller that:
m Requires no system model

m Learns in real time

m Remains robust to disturbances
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Application: Floating Offshore Wind Turbines

Control Objective

m Region I: Start up
m Region II: MPPT

= Region III: maintain rated
power, reducing fatigue
loads

m Region IV: Survival mode

M. Sarbandi (Data-based ISMC)

Power output

I
I
I .
_____ -E---------- Rated point ~Rated power
i
i
| I I v
i
]
i
I
i !
y Starts generating
b " Wind speed
Cut-in Rated Cut-out
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Application: Floating Offshore Wind Turbines

Tg,rated

‘Adaptation laws (15) ‘

[ Rotor speed
Scaled platform pitch rate

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE
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Simulation Setup & Results & Discussion

Simulation Setup

OpenFAST Simulator Overview

m OpenFAST + MaTLAB/Simulink
= ROSCO', Classic ISMC, Data-based
ISMC )
| Operating Conditions ]
Wind speed: 18 m/s (turbulent)
Wave height: 3.25 m (irregular)
Simulation time: 1000s
DoFs: all 24 activated
.

 Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53-73, 2022
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Simulation Setup & Results & Discussion

What is ROSCO?

m Developed by the National Renewable
Energy Laboratory (NREL)

m ROSCO (Reference Open-Source Reference Open-Source Controller

Controller) is an open-source control X .
-
)

framework

m Demonstrated superior performance for
controlling floating offshore wind turbines
compared to other controllers

Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53-73, 2022

ECN - LS2N - DENSE October 1, 2025



Simulation Setup & Results & Discussion

Wind and Wave Conditions

= Wind: Turbulent wind speed generated by TurbSim with a mean velocity of 18 m.s~!,
following the Kaimal turbulence model.

m Wave: Irregular wave conditions generated with the HydroDyn module in OpenFAST, based
on the Pierson—Moskowitz spectrum, with a significant wave height of 3.25 m.

N
o

Wind speed [m/s]
&

=
3

Wave height [m]
AN o N &
= |

0 100 200 300 400 500 600 700 800 900 1000
Time[s]
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Simulation Setup & Results & Discussion

Tracking Performance — Power

——ROSCO —— ISMC —— Data-based ISMC

5.4 _P* — 5MW

44 -
50 50
4.2 .
4.8l 4.8
4 0 109 1 150I 1 2(DI 5{:)ol 1 550 1 1 600
0 100 200 300 400 500 600 700 800 900 1000
Time[s)]
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Simulation Setup & Results & Discussion

Tracking Performance — Rotor Speed

135
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Rotor speed [rpm]

=
o
T
i
N
[
1

©
o

T
1

00 150 200 500 550 600
1

1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Time[s|

ECN - LS2N - DENSE October 1, 2025



Simulation Setup & Results & Discussion

Blade Pitch Variation

Blade pitch angle [°]

10

0 100 200 300 400 500 600 700 800 900 1000
Time[s)]
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Simulation Setup & Results & Discussion

Platform Pitch Rate
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Simulation Setup & Results & Discussion

From Time Series to Comparable Metrics

{Time—series signals

not enough for holistic comparison

Feature

RMS, VAR, DEL

»| Radar plots

extraction

Root Mean Square
(RMS) of platform roll,
pitch, yaw, and pitch rate.

Variation }; |y;+1 — y;| of
the signal. Higher values
= more activity (chatter-

ing).

\

Damage Equivalent
Load (DEL) of Fatigue
loads: tower bases, blade
roots, fair-lead forces &
anchor forces of mooring
lines.

The next slides use radar plots to compare these normalized indicators across controllers.

M. Sarbandi (Data-based ISMC)
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Simulation Setup & Results & Discussion

From Time Series to Comparable Metrics

Feature
extraction

{Time—series signals

RMS, VAR, DEL
»| Radar plots

of Fatigue
loads: tower bases, blade
roots, fair-lead forces &
anchor forces of mooring
lines.

not enough for holistic comparison

Root Mean Square

RMS) of ° '

pitch, yaw,

The next slides use radar plots to compare these normalized indicators across controllers.
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Comparing the performance metrics.



Comparing the structural forces.



Simulation Setup & Results & Discussion

Conclusion & Future Work

« Conclusion

m Data-based ISMC with adaptive NNs for FOWTs.

m No explicit model required; Lyapunov-based adaptation ensures closed-loop stability.

m In OpenFAST (Region III): tighter power tracking and reduced structural loads.

m Practical and robust: online learning, bounded errors, resilient to unmodeled dynamics.
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Simulation Setup & Results & Discussion

Conclusion & Future Work

v Conclusion

m Data-based ISMC with adaptive NNs for FOWTs.

m No explicit model required; Lyapunov-based adaptation ensures closed-loop stability.

m In OpenFAST (Region III): tighter power tracking and reduced structural loads.

m Practical and robust: online learning, bounded errors, resilient to unmodeled dynamics.

€2 Future Work

m Explore higher—order sliding mode (HOSM) methods (e.g., super—twisting).
m Physics—informed learning: embed known dynamics; learn only residual.
m Evaluate advanced NN architectures (LSTM, RNN, etc.).

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025



“In God we trust; all others must bring data.”
— W. Edwards Deming

Thanks for your attention!

To contact me: E E

¥ moein.sarbandi®@ec-nantes.fr

M linkedin.com/in/moeinsarbandi E
Scan to visit the DENSE website

This work is supported by the EU Horizon Europe Program (GA No. 101120278 — DENSE).


https://linkedin.com/in/moein-sarbandi-2a3310252
https://dense-dn.eu/
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