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Introduction & Motivation

About Me

Affiliation: LS2N, École Centrale Nantes

Position: Ph.D. Candidate in Control
Theory

Project: Marie Curie DENSE Network

Research:
Nonlinear adaptive and robust control

Data-based methods

Applications to FOWTs
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Introduction & Motivation

Motivation – Why this project is important

Many real systems are nonlinear,
with unknown/uncertain
dynamics and disturbances.

Robust control exists (𝐻∞,
robust MPC, sliding mode control,
etc.), but they require a model.

Real-World Systems

Unmodeled
Dynamics Uncertainties

Disturbances Complexity

Difficult to obtain (Accurate) Model

Key Question:
How can we design controllers

without relying on models?

Data-based Control → Next Section
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Introduction & Motivation

Motivation - IEEE Roadmap

This aligns with the IEEE Control Systems Roadmap.

Emphasizes the importance of data-driven control
strategies for complex, uncertain, and large-scale systems.

Highlights the promising future of such approaches in
control applications.

2030

CONTROL FOR  
SOCIETAL-SCALE 
CHALLENGES:  
ROAD MAP

An IEEE Control Systems Initiative

Anuradha M. Annaswamy 
Karl H. Johansson  |  George J. Pappas
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Background: ISMC & Neural Approximators

Why ANNs in Control?

Thanks to the Universal Approximation Theorem1, the use of Artificial Neural Networks
(ANNs) has grown across scientific fields, and control theory is no exception.

System identification2

State estimation and observers3

Inverse dynamics / feedforward control3

Learning optimal control laws4

Model predictive / constrained control5

1. Scarselli et al., Universal approximation using feed-forward neural networks: A survey of some existing methods, and some new
results, Neural Networks, 11(1), 15–37, 1998.
2. Kuschewski et al., Application of feedforward neural networks to dynamical system identification and control, IEEE Trans. Control
Systems Technology, 1(1), 37–49, 1993.
3. Hunt et al., & Gawthrop, P. J., Neural networks for control systems—a survey, Automatica, 28(6), 1083–1112, 1992.
4. Åkesson et al., A neural network model predictive controller, Journal of Process Control, 16(9), 937–946, 2006.

5. Chen et al., Approximating explicit model predictive control using constrained neural networks, Proc. ACC, pp. 1520–1527, 2018.
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Background: ISMC & Neural Approximators

Why ANNs in Control?

Universal Approximation Theorem
The Universal Approximation Theorem states that any continuous function can be approximated
arbitrarily well by a neural network with at least one hidden layer with a finite number of weights.

𝑥1

𝑥2

...

𝑥𝑛

Input Layer

ℎ1

ℎ2

...

ℎ𝑘

Hidden Layer

∑

Output

𝑓 (𝑥)

Φ̂ 𝑓 𝑊̂ 𝑓
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Background: ISMC & Neural Approximators

Objective & Approach

Challenge: NN is not enough for control p
NNs approximate with nonzero error.
Approximation quality changes based on
the input and tuning.
Difficult to guarantee stability.

Solution: Data-based ISMC ✓

Use NNs to learn functions online.
Adapt all NN weights with
Lyapunov-based laws.

Key idea: NNs for modeling + ISMC for robustness
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Background: ISMC & Neural Approximators

Objective & Approach

Challenge: NN is not enough for control p
NNs approximate with nonzero error.
Approximation quality changes based on
the input and tuning.
Difficult to guarantee stability.

Solution: Data-based ISMC ✓

Use NNs to learn functions online.
Adapt all NN weights with
Lyapunov-based laws.

Key idea: NNs for modeling + ISMC for robustness

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 7 / 37



Background: ISMC & Neural Approximators

Objective & Approach

✓ Summary of objective and contributions
1 A robust data-based ISMC approach is developed for nonlinear systems with unknown

dynamics. This method employs online NN approximations for both the drift and input
functions.

2 A Lyapunov-based adaptation law is proposed for updating all NN weights, including
input-to-hidden and hidden-to-output connections.

3 Closed-loop stability formally established.

4 Application to FOWT collective blade pitch.
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Problem Formulation & Proposed Solution

Roadmap
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Problem Formulation & Proposed Solution

Problem Formulation

Nonlinear System

¤𝑥 = F (𝑥, 𝑡) + G(𝑥, 𝑡)𝑢,
𝑦 = 𝑠(𝑥, 𝑡),

where 𝑥 ∈ X ⊂ R𝑛 is the state vector, 𝑢 ∈ R is the control input, 𝑦 ∈ R is the output.
The functions F (𝑥, 𝑡) and G(𝑥, 𝑡) are assumed to be: smooth, unknown, bounded, ∀𝑥 ∈ X.
A sliding mode is established when 𝑠(𝑥, 𝑡) = 0 with 𝑥 ∈ X.

Dynamics of the Sliding Variable

¤𝑠 =
𝜕𝑠

𝜕𝑥
¤𝑥 + 𝜕𝑠

𝜕𝑡
=

𝜕𝑠

𝜕𝑡
+ 𝜕𝑠

𝜕𝑥
F (𝑥, 𝑡)︸               ︷︷               ︸

𝑓 ( ·)

+ 𝜕𝑠

𝜕𝑥
G(𝑥, 𝑡)︸       ︷︷       ︸
𝑔 ( ·)

𝑢

Objective: enforce 𝑠(𝑥, 𝑡) = 0 despite uncertainties.
M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 9 / 37



Problem Formulation & Proposed Solution

Integral Sliding Mode Control

To achieve this objective and compensate the effect of uncertainties from 𝑡 ≥ 0, a robust controller
can be designed in spite of perturbations and uncertainties. According to Utkin†, the control law is
defined as

Control Law

𝑢 = 𝑢0 + 𝑢1,

𝑢0 = −𝑘𝑠, 𝑢1 = −𝜌 sign(𝜎)

𝑢0 handles nominal dynamics.
𝑢1 enforces robustness against disturbances.

† V. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions, CDC, Kobe, Japan, 1996, pp.

4591–4596.
M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 10 / 37



Problem Formulation & Proposed Solution

Integral Sliding Mode Control

Integral Sliding Variable

𝜎 = 𝑠 + 𝑧,

where 𝑠 = 𝑒 and 𝑧 is defined such that
𝑧(0) = −𝑠(0) (i.e., 𝜎(0) = 0) and

¤𝑧 = −
[
𝑓 (·) + 𝑔(·) 𝑢0

]
.

This formulation guarantees that the sliding motion with respect to 𝜎 starts from the initial time,
eliminating the reaching phase typical of conventional sliding mode controllers†.

† V. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions, CDC, Kobe, Japan, 1996, pp. 4591-4596.
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Problem Formulation & Proposed Solution

Data-Based Function Approximation

Designing an ISM control requires system dynamics*. However, due to their complexity and strong
aerodynamic-hydrodynamic coupling, many real-world systems like FOWTs are difficult to model.

Functions Approximation

𝑓 (·) = 𝑊⊤
𝑓 ℎ 𝑓 (Φ⊤

𝑓 𝑠) + 𝜀 𝑓 ,

𝑔(·) = 𝑊⊤
𝑔 ℎ𝑔 (Φ⊤

𝑔 𝑠) + 𝜀𝑔,

𝑊 𝑓 , 𝑊𝑔, Φ 𝑓 , Φ𝑔: the ideal NN weights. 𝜀 𝑓 (𝑥), 𝜀𝑔 (𝑥): the approximation errors.

* Pan, C. Yang, L. Pan, and H. Yu: Integral sliding mode control: Performance, modification, and improvement, IEEE Transactions on

Industrial Informatics, vol. 14, no. 7, pp. 3087–3096, 2018.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 12 / 37



Problem Formulation & Proposed Solution

Data-Based Function Approximation

Sigmoid Activation Function

ℎ(𝛼) = 1
1 + 𝑒−𝛼

Chosen for smooth derivatives and fast
online learning.

−6 −4 −2 2 4 6

0.5

1

0

α

Function value

h(α)

ḣ(α)

Figure: The sigmoid function ℎ(·) (solid blue line)
and its derivative ¤ℎ(·) (dashed red line), illustrating
smoothness and boundedness properties desirable for
stability analysis in control systems.
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Problem Formulation & Proposed Solution

Assumptions

Boundedness Assumption
The functions 𝑓 (·) and 𝑔(·) are continuous and bounded, satisfying

𝑓 (·) ∈ [− 𝑓𝑚, 𝑓𝑀 ], 𝑔(·) ∈ [𝑔𝑚, 𝑔𝑀 ] ∀𝑥 ∈ X

where 𝑓𝑚, 𝑓𝑀 , 𝑔𝑚, and 𝑔𝑀 are positive but unknown constants.

Weights Boundedness
The NN weights 𝑊 𝑓 , 𝑊𝑔, Φ 𝑓 , and Φ𝑔, as well as the corresponding approximation errors 𝜀 𝑓 and
𝜀𝑔, are assumed to be bounded. That is, there exist positive constants 𝑊̄ 𝑓 , 𝑊̄𝑔, Φ̄ 𝑓 , Φ̄𝑔, 𝜀 𝑓 , and 𝜀𝑔
such that

∥𝑊 𝑓 ∥ ≤ 𝑊̄ 𝑓 , ∥Φ 𝑓 ∥ ≤ Φ̄ 𝑓 , |𝜀 𝑓 | ≤ 𝜀 𝑓 ,

∥𝑊𝑔∥ ≤ 𝑊̄𝑔, ∥Φ𝑔∥ ≤ Φ̄𝑔, |𝜀𝑔 | ≤ 𝜀𝑔

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 14 / 37



Problem Formulation & Proposed Solution

z–dynamics with NN approximators

Weight Approximation Errors

𝑊̃ 𝑓 = 𝑊 𝑓 − 𝑊̂ 𝑓 , Φ̃ 𝑓 = Φ 𝑓 − Φ̂ 𝑓 ,

𝑊̃𝑔 = 𝑊𝑔 − 𝑊̂𝑔, Φ̃𝑔 = Φ𝑔 − Φ̂𝑔

Key Idea
Neural Network (NN) approximators are applied within the ISMC framework. Since the true
functions 𝑓 (·) and 𝑔(·) are unknown, the dynamics of the integral term 𝑧 are approximate.

Approximated z–Dynamics
¤̂𝑧 = −

(
𝑓 (·) + 𝑔̂(·) 𝑢0

)
data–based approximation

= −
(
𝑊̂⊤

𝑓 ℎ 𝑓 (Φ̂⊤
𝑓 𝑠) + 𝑊̂⊤

𝑔 ℎ𝑔 (Φ̂⊤
𝑔 𝑠) 𝑢0

)
M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 15 / 37



Problem Formulation & Proposed Solution

Theorem

Theorem
Consider the nonlinear uncertain system ¤𝑠 = 𝑓 + 𝑔 𝑢, controlled by the law 𝑢 = −𝑘𝑠 − 𝜌 sign(𝜎),
where 𝜎 = 𝑠 + 𝑧, with 𝑧(0) = −𝑠(0) and 𝑧 being derived from ¤̂𝑧 = −

(
𝑓 (·) + 𝑔̂(·)𝑢0

)
, updated

according to the adaptation protocols given in the sequel.
If the assumptions hold, and the NN estimators employ the logistic sigmoid activation function
ℎ(𝛼) = 1

1+𝑒−𝛼 , with derivative ¤̂
ℎ 𝑓 = ℎ̂ 𝑓 ◦ (1 − ℎ̂ 𝑓 ), then the sliding variable remains at 𝜎(𝑡) = 0 for

all 𝑡 ≥ 0.

Takeaway
In other words: the controller ensures stability of the closed-loop system , thanks to NN approximation
and ISMC.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 16 / 37



Problem Formulation & Proposed Solution

Lyapunov candidate

Considering the following Lyapunov candidate function

Lyapunov Function

𝑉 =
1
2
𝜎2 + 1

2
tr
(
𝑊̃⊤

𝑓 Γ
−1
𝑓 𝑊̃ 𝑓

)
+ 1

2
tr
(
𝑊̃⊤

𝑔 Γ
−1
𝑔 𝑊̃𝑔

)
+ 1

2
tr
(
Φ̃⊤

𝑓Θ
−1
𝑓 Φ̃ 𝑓

)
+ 1

2
tr
(
Φ̃⊤

𝑔Θ
−1
𝑔 Φ̃𝑔

)
Then, differentiating with respect to time, and substituting the control input and . . .
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Problem Formulation & Proposed Solution

Adaptation laws

The NN weights are proposed to be updated based on the adaptation laws as

Adaptation laws.

¤̂𝑊 𝑓 = Γ 𝑓 𝜎 ℎ̂ 𝑓 ,

¤̂𝑊𝑔 = − Γ𝑔 𝜎 𝑘 𝑠 ℎ̂𝑔,

¤̂
Φ 𝑓 = Θ 𝑓 𝜎

(
𝑊̂⊤

𝑓
¤̂
ℎ 𝑓

)⊤
𝑠,

¤̂
Φ𝑔 = −Θ𝑔 𝜎 𝑘 𝑠

(
𝑊̂⊤

𝑔
¤̂
ℎ𝑔

)⊤
𝑠.

Let Γ 𝑓 , Γ𝑔,Θ 𝑓 ,Θ𝑔 ≻ 0 be constant learning–rate matrices.
These update laws ensure online adap-tation of the NN parameters in response to the evolving
system state.

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 18 / 37



Problem Formulation & Proposed Solution

Sketch of Proof 1/2

Sketch of Proof 1/2.
1 Using equations, we reach

¤𝜎 = ¤𝑠 + ¤̂𝑧 =
(
𝑊⊤

𝑓 ℎ 𝑓 − 𝑊̂⊤
𝑓 ℎ̂ 𝑓

)
+ 𝑘𝑠

(
𝑊̂⊤

𝑔 ℎ̂𝑔 −𝑊⊤
𝑔 ℎ𝑔

)
− 𝜌 sign(𝜎)

(
𝑊⊤

𝑔 ℎ𝑔 + 𝜀𝑔
)
+ 𝜀 𝑓

2 Substitute the update laws; the cross-terms cancel by construction.

3 To guarantee the negative definiteness of ¤𝑉 , the gain 𝜌 is chosen to dominate the remaining
terms.

□

M. Sarbandi (Data-based ISMC) ECN - LS2N - DENSE October 1, 2025 19 / 37



Problem Formulation & Proposed Solution

Sketch of Proof 2/2

Stability Result
Therefore, under the proposed gain design, the Lyapunov derivative satisfies

¤𝑉 ≤ −𝜂 |𝜎 |, 𝜂 > 0.

Since the integral sliding variable is initialized with 𝑧(0) = −𝑠(0), it follows that 𝜎(0) = 0, and
thus the sliding condition is enforced from the initial time instant and maintained for all 𝑡 ≥ 0.
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Application: Floating Offshore Wind Turbines
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Application: Floating Offshore Wind Turbines

Why Floating Offshore Wind?

Problem
Wind resources mainly in > 60 m depth
Fixed-bottom turbines costly & impractical

Solution
Floating platforms → access stronger
offshore winds

Challenges
High DOFs → oscillations, negative
damping
Wind–wave interactions → complex control
Standard pitch control is insufficient
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Application: Floating Offshore Wind Turbines

The Challenge of Floating Wind Turbines

Why is Control Difficult?
Floating platforms introduce more degrees of freedom (DOF).
Complex coupling between wind, waves, and structure.
Accurate models are hard to obtain and maintain.

Our Objective
Design a controller that:

Requires no system model
Learns in real time
Remains robust to disturbances
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Application: Floating Offshore Wind Turbines

Control Objective

Region I: Start up
Region II: MPPT
Region III: maintain rated
power, reducing fatigue
loads
Region IV: Survival mode

Wind speed

Po
w

er
ou

tp
ut

Rated power

Cut-in Rated Cut-out

I II III IV

Rated point

Starts generating
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Application: Floating Offshore Wind Turbines

Conceptual Diagram: How It All Works

+
−

ω∗
−

+

ωd

A
d
ap

ta
ti
on

la
w
s
(1
5) Ŵf

Θ̂f

Ŵg

Θ̂g

˙̂z in (14)

f̂ , ĝ

∫
+

+

k

−ρ sign(s) +
+

u0

β

Scaled platform pitch rate

Rotor speed
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Simulation Setup & Results & Discussion
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Simulation Setup & Results & Discussion

Simulation Setup

Framework
OpenFAST + Matlab/Simulink

ROSCO†, Classic ISMC, Data-based
ISMC

Operating Conditions

Wind speed: 18 m/s (turbulent)
Wave height: 3.25 m (irregular)
Simulation time: 1000 s
DoFs: all 24 activated

OpenFAST Simulator Overview

† Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, 2022
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Simulation Setup & Results & Discussion

What is ROSCO?

Developed by the National Renewable
Energy Laboratory (NREL)

ROSCO (Reference Open-Source
Controller) is an open-source control
framework

Demonstrated superior performance for
controlling floating offshore wind turbines
compared to other controllers

Reference Open-Source Controller

Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, 2022
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Simulation Setup & Results & Discussion

Wind and Wave Conditions

Wind: Turbulent wind speed generated by TurbSim with a mean velocity of 18 m.s−1,
following the Kaimal turbulence model.
Wave: Irregular wave conditions generated with the HydroDyn module in OpenFAST, based
on the Pierson–Moskowitz spectrum, with a significant wave height of 3.25 m.
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Simulation Setup & Results & Discussion

Tracking Performance – Power
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Simulation Setup & Results & Discussion

Tracking Performance – Rotor Speed
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Simulation Setup & Results & Discussion

Blade Pitch Variation
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Simulation Setup & Results & Discussion

Platform Pitch Rate
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Simulation Setup & Results & Discussion

From Time Series to Comparable Metrics

Time-series signals Feature
extraction

Radar plots

not enough for holistic comparison

RMS, VAR, DEL

Root Mean Square
(RMS) of platform roll,
pitch, yaw, and pitch rate.

Variation
∑ |𝑦𝑡+1 − 𝑦𝑡 | of

the signal. Higher values
⇒ more activity (chatter-
ing).

Damage Equivalent
Load (DEL) of Fatigue
loads: tower bases, blade
roots, fair-lead forces &
anchor forces of mooring
lines.

The next slides use radar plots to compare these normalized indicators across controllers.
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Simulation Setup & Results & Discussion

From Time Series to Comparable Metrics

Time-series signals Feature
extraction

Radar plots

not enough for holistic comparison

RMS, VAR, DEL

Root Mean Square
(RMS) of platform roll,
pitch, yaw, and pitch rate.

Variation
∑ |𝑦𝑡+1 − 𝑦𝑡 | of

the signal. Higher values
⇒ more activity (chatter-
ing).

Damage Equivalent
Load (DEL) of Fatigue
loads: tower bases, blade
roots, fair-lead forces &
anchor forces of mooring
lines.

The next slides use radar plots to compare these normalized indicators across controllers.

For these metrics, lower is better.
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Figure: Comparing the performance metrics.



Figure: Comparing the structural forces.



Simulation Setup & Results & Discussion

Conclusion & Future Work

✓ Conclusion

Data-based ISMC with adaptive NNs for FOWTs.
No explicit model required; Lyapunov-based adaptation ensures closed-loop stability.
In OpenFAST (Region III): tighter power tracking and reduced structural loads.
Practical and robust: online learning, bounded errors, resilient to unmodeled dynamics.

Ô Future Work

Explore higher–order sliding mode (HOSM) methods (e.g., super–twisting).
Physics–informed learning: embed known dynamics; learn only residual.
Evaluate advanced NN architectures (LSTM, RNN, etc.).
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“In God we trust; all others must bring data.”
— W. Edwards Deming

Thanks for your attention!

To contact me:

# moein.sarbandi@ec-nantes.fr

ï linkedin.com/in/moeinsarbandi
Scan to visit the DENSE website

This work is supported by the EU Horizon Europe Program (GA No. 101120278 – DENSE).

https://linkedin.com/in/moein-sarbandi-2a3310252
https://dense-dn.eu/
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