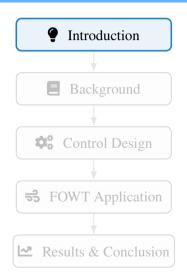
Data-Based ISMC of FOWTs with Unknown Dynamics

Moein Sarbandi

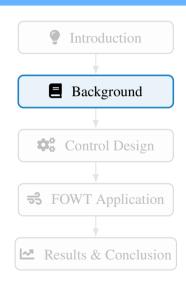
École Centrale Nantes

Supervisors: Prof. F Plestan & Dr. MA Hamida

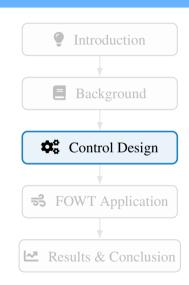
- Introduction
 - About Me
 - Motivation



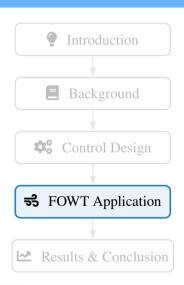
- Introduction
 - About Me
 - Motivation
- Background
 - ISMC basics
 - Neural Approximators



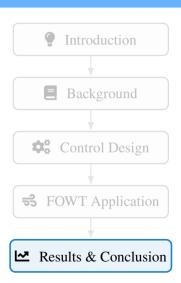
- Introduction
 - About Me
 - Motivation
- Background
 - ISMC basics
 - Neural Approximators
- Control Design
 - Problem Formulation
 - Proposed Controller
 - Sketch of Proof



- Introduction
 - About Me
 - Motivation
- Background
 - ISMC basics
 - Neural Approximators
- Control Design
 - Problem Formulation
 - Proposed Controller
 - Sketch of Proof
- **Application: Floating Wind Turbines**
 - Control Objectives in FOWTs
 - simulation software and conditions



- Introduction
 - About Me
 - Motivation
- Background
 - ISMC basics
 - Neural Approximators
- Control Design
 - Problem Formulation
 - Proposed Controller
 - Sketch of Proof
- **Application: Floating Wind Turbines**
 - Control Objectives in FOWTs
 - simulation software and conditions
- Results & Conclusion



Roadmap

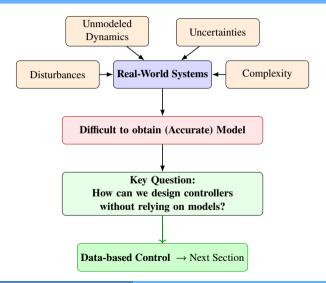
- 1. Introduction & Motivation
- 2. Background: ISMC & Neural Approximators
- 3. Problem Formulation & Proposed Solution
- 4. Application: Floating Offshore Wind Turbines
- Simulation Setup & Results & Discussion

About Me

- Affiliation: LS2N, École Centrale Nantes
- **Position:** Ph.D. Candidate in Control Theory
- **Project:** Marie Curie DENSE Network
- Research:
 - Nonlinear adaptive and robust control
 - Data-based methods
 - Applications to FOWTs

Motivation – Why this project is important

- Many real systems are nonlinear, with unknown/uncertain dynamics and disturbances.
- Robust control exists (H_{∞} , robust MPC, sliding mode control, etc.), but they require a model.



Motivation - IEEE Roadmap

- This aligns with the **IEEE Control Systems Roadmap**.
- Emphasizes the importance of data-driven control strategies for complex, uncertain, and large-scale systems.
- Highlights the **promising future** of such approaches in control applications.

digital futures

Roadmap

- 1. Introduction & Motivation
- 2. Background: ISMC & Neural Approximators
- 3. Problem Formulation & Proposed Solution
- 4. Application: Floating Offshore Wind Turbines
- Simulation Setup & Results & Discussion

Why ANNs in Control?

- Thanks to the *Universal Approximation Theorem*¹, the use of **Artificial Neural Networks** (**ANNs**) has grown across scientific fields, and control theory is no exception.
- System identification²
- State estimation and observers³
- Inverse dynamics / feedforward control³

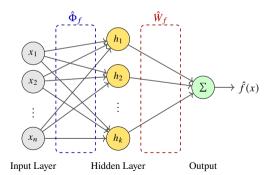
- Learning optimal control laws⁴
- Model predictive / constrained control⁵

- 1. Scarselli et al., Universal approximation using feed-forward neural networks: A survey of some existing methods, and some new results, Neural Networks, 11(1), 15–37, 1998.
- 2. Kuschewski et al., Application of feedforward neural networks to dynamical system identification and control, IEEE Trans. Control Systems Technology, 1(1), 37–49, 1993.
- 3. Hunt et al., & Gawthrop, P. J., Neural networks for control systems—a survey, Automatica, 28(6), 1083–1112, 1992.
- 4. Åkesson et al., A neural network model predictive controller, Journal of Process Control, 16(9), 937–946, 2006.
- 5. Chen et al., Approximating explicit model predictive control using constrained neural networks, Proc. ACC, pp. 1520–1527, 2018.

Why ANNs in Control?

Universal Approximation Theorem

The *Universal Approximation Theorem* states that **any continuous function** can be approximated arbitrarily well by a neural network with at least **one hidden layer** with a **finite** number of weights.



Challenge: NN is not enough for control **★**

- NNs approximate with *nonzero* error.
- Approximation quality changes based on the input and tuning.
- Difficult to guarantee stability.

Challenge: NN is not enough for control **★**

- NNs approximate with *nonzero* error.
- Approximation quality changes based on the input and tuning.
- Difficult to guarantee stability.

Solution: Data-based ISMC 🗸

- Use NNs to learn functions online.
- Adapt all NN weights with Lyapunov-based laws.

Key idea: NNs for modeling + ISMC for robustness

- A robust data-based ISMC approach is developed for nonlinear systems with unknown dynamics. This method employs online NN approximations for both the drift and input functions.
- A Lyapunov-based adaptation law is proposed for updating all NN weights, including input-to-hidden and hidden-to-output connections.
- 3 Closed-loop stability formally established.
- 4 Application to FOWT collective blade pitch.

- A robust data-based ISMC approach is developed for nonlinear systems with unknown dynamics. This method employs online NN approximations for both the drift and input functions.
- 2 A Lyapunov-based adaptation law is proposed for updating all NN weights, including input-to-hidden and hidden-to-output connections.
- **3** Closed-loop stability formally established.
- 4 Application to FOWT collective blade pitch.

- A robust data-based ISMC approach is developed for nonlinear systems with unknown dynamics. This method employs online NN approximations for both the drift and input functions.
- 2 A Lyapunov-based adaptation law is proposed for updating all NN weights, including input-to-hidden and hidden-to-output connections.
- **Closed-loop stability** formally established.
- 4 Application to FOWT collective blade pitch.

- A robust data-based ISMC approach is developed for nonlinear systems with unknown dynamics. This method employs online NN approximations for both the drift and input functions.
- 2 A Lyapunov-based adaptation law is proposed for updating all NN weights, including input-to-hidden and hidden-to-output connections.
- **3** Closed-loop stability formally established.
- 4 Application to FOWT collective blade pitch.

Roadmap

- 1. Introduction & Motivation
- Background: ISMC & Neural Approximators
- 3. Problem Formulation & Proposed Solution
- 4. Application: Floating Offshore Wind Turbines
- Simulation Setup & Results & Discussion

Problem Formulation

Nonlinear System

$$\dot{x} = \mathcal{F}(x,t) + \mathcal{G}(x,t)u,$$

$$y = s(x,t),$$

where $x \in \mathcal{X} \subset \mathbb{R}^n$ is the **state vector**, $u \in \mathbb{R}$ is the **control input**, $y \in \mathbb{R}$ is the **output**. The functions $\mathcal{F}(x,t)$ and $\mathcal{G}(x,t)$ are assumed to be: **smooth**, **unknown**, **bounded**, $\forall x \in \mathcal{X}$. A sliding mode is established when s(x,t) = 0 with $x \in \mathcal{X}$.

Dynamics of the Sliding Variable

$$\dot{s} = \frac{\partial s}{\partial x}\dot{x} + \frac{\partial s}{\partial t} = \underbrace{\frac{\partial s}{\partial t} + \frac{\partial s}{\partial x}\mathcal{F}(x, t)}_{f(\cdot)} + \underbrace{\frac{\partial s}{\partial x}\mathcal{G}(x, t)}_{g(\cdot)} u$$

Objective: enforce s(x, t) = 0 despite uncertainties.

Integral Sliding Mode Control

To achieve this objective and compensate the effect of uncertainties from $t \ge 0$, a robust controller can be designed in spite of perturbations and uncertainties. According to Utkin[†], the control law is defined as

Control Law

$$u = u_0 + u_1,$$

$$u_0 = -ks$$
, $u_1 = -\rho \operatorname{sign}(\sigma)$

- \mathbf{u}_0 handles nominal dynamics.
- \mathbf{u}_1 enforces robustness against disturbances.

[†] V. Utkin and J. Shi: *Integral sliding mode in systems operating under uncertainty conditions*, CDC, Kobe, Japan, 1996, pp. 4591–4596.

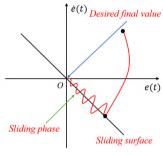
Integral Sliding Mode Control

Integral Sliding Variable

$$\sigma = s + z$$
,

where s = e and z is defined such that z(0) = -s(0) (i.e., $\sigma(0) = 0$) and

$$\dot{z} = -[f(\cdot) + g(\cdot) u_0].$$



This formulation guarantees that the sliding motion with respect to σ starts from the *initial time*, eliminating the reaching phase typical of conventional sliding mode controllers[†].

[†] V. Utkin and J. Shi: Integral sliding mode in systems operating under uncertainty conditions, CDC, Kobe, Japan, 1996, pp. 4591-4596.

Data-Based Function Approximation

Designing an ISM control requires system dynamics*. However, due to their complexity and strong aerodynamic-hydrodynamic coupling, many real-world systems like FOWTs are difficult to model.

Functions Approximation

$$f(\cdot) = W_f^{\top} h_f(\Phi_f^{\top} s) + \varepsilon_f,$$

$$g(\cdot) = W_g^{\top} h_g(\Phi_g^{\top} s) + \varepsilon_g,$$

 W_f, W_g, Φ_f, Φ_g : the ideal NN weights. $\varepsilon_f(x), \varepsilon_g(x)$: the approximation errors.

^{*} Pan, C. Yang, L. Pan, and H. Yu: *Integral sliding mode control: Performance, modification, and improvement*, IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3087–3096, 2018.

Data-Based Function Approximation

Sigmoid Activation Function

$$h(\alpha) = \frac{1}{1 + e^{-\alpha}}$$

Chosen for smooth derivatives and fast online learning.

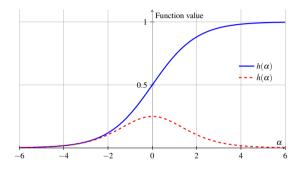


Figure: The sigmoid function $h(\cdot)$ (solid blue line) and its derivative $\dot{h}(\cdot)$ (dashed red line), illustrating smoothness and boundedness properties desirable for stability analysis in control systems.

Assumptions

Boundedness Assumption

The functions $f(\cdot)$ and $g(\cdot)$ are continuous and bounded, satisfying

$$f(\cdot) \in [-f_m, f_M], \quad g(\cdot) \in [g_m, g_M] \quad \forall x \in X$$

where f_m , f_M , g_m , and g_M are positive but unknown constants.

Weights Boundedness

The NN weights W_f , W_g , Φ_f , and Φ_g , as well as the corresponding approximation errors ε_f and ε_g , are assumed to be bounded. That is, there exist positive constants \bar{W}_f , \bar{W}_g , $\bar{\Phi}_f$, $\bar{\Phi}_g$, $\bar{\varepsilon}_f$, and $\bar{\varepsilon}_g$ such that

$$||W_f|| \le \bar{W}_f, \qquad ||\Phi_f|| \le \bar{\Phi}_f, \qquad |\varepsilon_f| \le \bar{\varepsilon}_f,$$

$$\|W_g\| \leq \bar{W}_g, \qquad \|\Phi_g\| \leq \bar{\Phi}_g, \qquad |\varepsilon_g| \leq \bar{\varepsilon}_g$$

z-dynamics with NN approximators

Weight Approximation Errors

$$\tilde{W}_f = W_f - \hat{W}_f, \qquad \tilde{\Phi}_f = \Phi_f - \hat{\Phi}_f,$$

$$\tilde{W}_g = W_g - \hat{W}_g, \qquad \tilde{\Phi}_g = \Phi_g - \hat{\Phi}_g$$

Key Idea

Neural Network (NN) approximators are applied within the ISMC framework. Since the true functions $f(\cdot)$ and $g(\cdot)$ are unknown, the dynamics of the integral term z are approximate.

Approximated z–Dynamics

$$\dot{\hat{z}} = -(\hat{f}(\cdot) + \hat{g}(\cdot) u_0)$$
 data-based approximation

$$= - \Big(\hat{W}_f^\top h_f(\hat{\Phi}_f^\top s) + \hat{W}_g^\top h_g(\hat{\Phi}_g^\top s) \, u_0 \Big)$$

Theorem

Consider the nonlinear uncertain system $\dot{s} = f + g u$, controlled by the law $u = -ks - \rho \operatorname{sign}(\sigma)$, where $\sigma = s + \hat{z}$, with $\hat{z}(0) = -s(0)$ and \hat{z} being derived from $\dot{\hat{z}} = -(\hat{f}(\cdot) + \hat{g}(\cdot)u_0)$, updated according to the adaptation protocols given in the sequel.

If the assumptions hold, and the NN estimators employ the logistic sigmoid activation function $h(\alpha) = \frac{1}{1+e^{-\alpha}}$, with derivative $\dot{\hat{h}}_f = \hat{h}_f \circ (1-\hat{h}_f)$, then the sliding variable remains at $\sigma(t) = 0$ for all $t \ge 0$.

Takeaway

In other words: the controller ensures stability of the closed-loop system, thanks to NN approximation and ISMC.

Lyapunov candidate

Considering the following Lyapunov candidate function

Lyapunov Function

$$V = \frac{1}{2}\sigma^2 + \frac{1}{2}\operatorname{tr}(\tilde{W}_f^{\mathsf{T}}\Gamma_f^{-1}\tilde{W}_f) + \frac{1}{2}\operatorname{tr}(\tilde{W}_g^{\mathsf{T}}\Gamma_g^{-1}\tilde{W}_g) + \frac{1}{2}\operatorname{tr}(\tilde{\Phi}_f^{\mathsf{T}}\Theta_f^{-1}\tilde{\Phi}_f) + \frac{1}{2}\operatorname{tr}(\tilde{\Phi}_g^{\mathsf{T}}\Theta_g^{-1}\tilde{\Phi}_g)$$

Then, differentiating with respect to time, and substituting the control input and ...

Adaptation laws

The NN weights are proposed to be updated based on the adaptation laws as

Adaptation laws.

$$\begin{split} \dot{\hat{W}}_f &= \Gamma_f \, \sigma \, \hat{h}_f, \\ \dot{\hat{W}}_g &= -\Gamma_g \, \sigma \, k \, s \, \hat{h}_g, \\ \dot{\hat{\Phi}}_f &= \Theta_f \, \sigma \, \left(\hat{W}_f^\top \dot{\hat{h}}_f\right)^\top s, \\ \dot{\hat{\Phi}}_g &= -\Theta_g \, \sigma \, k \, s \, \left(\hat{W}_g^\top \dot{\hat{h}}_g\right)^\top s. \end{split}$$

Let Γ_f , Γ_g , Θ_f , $\Theta_g > 0$ be constant learning–rate matrices.

These update laws ensure online adap-tation of the NN parameters in response to the evolving system state.

Sketch of Proof 1/2.

Using equations, we reach

$$\dot{\sigma} = \dot{s} + \dot{\hat{z}} = \left(W_f^\top h_f - \hat{W}_f^\top \hat{h}_f\right) + ks \left(\hat{W}_g^\top \hat{h}_g - W_g^\top h_g\right) - \rho \ \mathrm{sign}(\sigma) \left(W_g^\top h_g + \varepsilon_g\right) + \varepsilon_f$$

- 2 Substitute the update laws; the cross-terms cancel by construction.
- 3 To guarantee the negative definiteness of \dot{V} , the gain ρ is chosen to dominate the remaining terms.

Sketch of Proof 2/2

Stability Result

Therefore, under the proposed gain design, the Lyapunov derivative satisfies

$$\dot{V} \le -\eta |\sigma|, \quad \eta > 0.$$

Since the integral sliding variable is initialized with $\hat{z}(0) = -s(0)$, it follows that $\sigma(0) = 0$, and thus the sliding condition is enforced from the initial time instant and maintained for all $t \ge 0$.

Roadmap

- 1. Introduction & Motivation
- 2. Background: ISMC & Neural Approximators
- 3. Problem Formulation & Proposed Solution
- 4. Application: Floating Offshore Wind Turbines
- Simulation Setup & Results & Discussion

Why Floating Offshore Wind?

Problem

Wind resources mainly in > 60 m depth Fixed-bottom turbines costly & impractical

Solution

Floating platforms \rightarrow access stronger offshore winds

Challenges

High DOFs \rightarrow oscillations, negative damping

Wind-wave interactions \rightarrow complex control Standard pitch control is insufficient

Why Floating Offshore Wind?

Problem

Wind resources mainly in > 60 m depth Fixed-bottom turbines costly & impractical

Solution

Floating platforms \rightarrow access stronger offshore winds

Challenges

 $\mbox{High DOFs} \rightarrow \mbox{oscillations, negative} \\ \mbox{damping}$

Wind–wave interactions \rightarrow complex control Standard pitch control is insufficient

The Challenge of Floating Wind Turbines

Why is Control Difficult?

- Floating platforms introduce more **degrees of freedom (DOF)**.
- Complex coupling between wind, waves, and structure.
- **Accurate models** are hard to obtain and maintain.

Our Objective

Design a controller that

- Requires no system model
- Learns in real time
- Remains robust to disturbances

The Challenge of Floating Wind Turbines

Why is Control Difficult?

- Floating platforms introduce more **degrees of freedom (DOF)**.
- Complex coupling between wind, waves, and structure.
- Accurate models are hard to obtain and maintain.

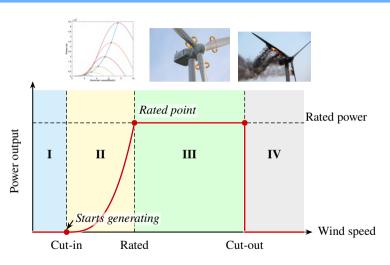
Our Objective

Design a controller that:

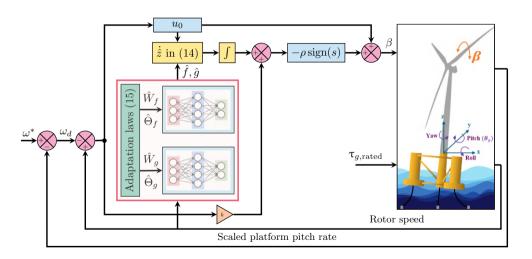
- Requires **no system model**
- Learns in real time
- Remains robust to disturbances

Control Objective

- Region I: Start up
- Region II: MPPT
- Region III: maintain rated power, reducing fatigue loads
- Region IV: Survival mode



Conceptual Diagram: How It All Works



Roadmap

- 1. Introduction & Motivation
- Background: ISMC & Neural Approximators
- 3. Problem Formulation & Proposed Solution
- 4. Application: Floating Offshore Wind Turbines
- 5. Simulation Setup & Results & Discussion

Simulation Setup

Framework

- OpenFAST + Matlab/Simulink
- ROSCO[†], Classic ISMC, Data-based **ISMC**

Operating Conditions

Wind speed: 18 m/s (turbulent)

Wave height: 3.25 m (irregular)

Simulation time: $1000 \, s$

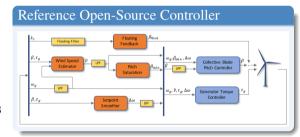
all 24 activated DoFs:

OpenFAST Simulator Overview

[†] Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, 2022

What is ROSCO?

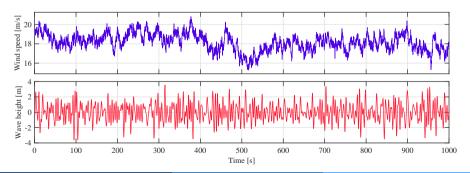
- Developed by the National Renewable
 Energy Laboratory (NREL)
- ROSCO (Reference Open-Source Controller) is an open-source control framework
- Demonstrated superior performance for controlling floating offshore wind turbines compared to other controllers



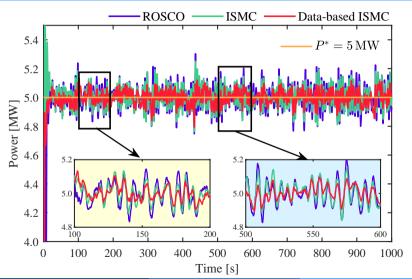
Abbas et al.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, 2022

Wind and Wave Conditions

- Wind: Turbulent wind speed generated by **TurbSim** with a mean velocity of 18 m.s⁻¹, following the **Kaimal turbulence model**.
- Wave: Irregular wave conditions generated with the **HydroDyn** module in OpenFAST, based on the **Pierson–Moskowitz spectrum**, with a significant wave height of 3.25 m.



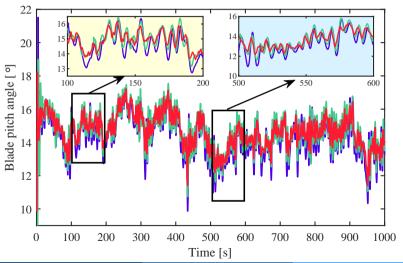
Tracking Performance – Power



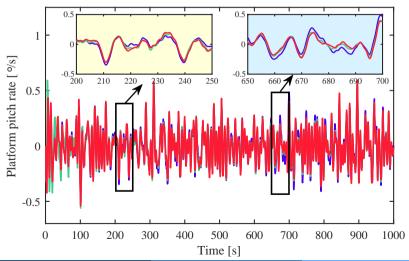
Tracking Performance – Rotor Speed



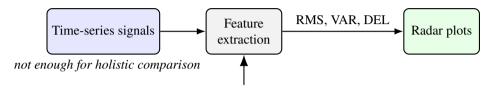
Blade Pitch Variation



Platform Pitch Rate



From Time Series to Comparable Metrics



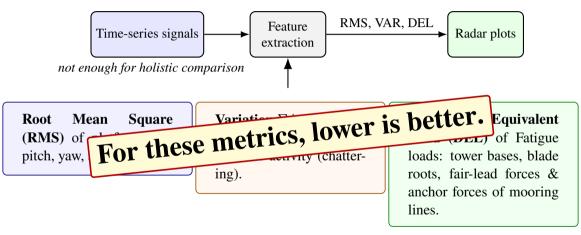
Root Mean Square (RMS) of platform roll, pitch, yaw, and pitch rate.

Variation $\sum |y_{t+1} - y_t|$ of the signal. Higher values \Rightarrow more activity (chattering).

Damage Equivalent Load (DEL) of Fatigue loads: tower bases, blade roots, fair-lead forces & anchor forces of mooring lines.

The next slides use radar plots to compare these normalized indicators across controllers.

From Time Series to Comparable Metrics



The next slides use radar plots to compare these normalized indicators across controllers.

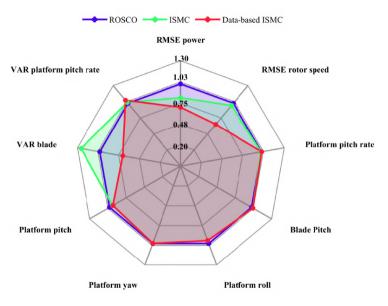


Figure: Comparing the performance metrics.

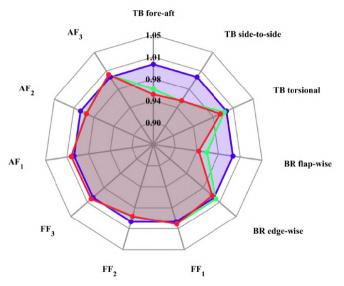


Figure: Comparing the structural forces.

✓ Conclusion

- **Data-based ISMC** with adaptive NNs for FOWTs.
- No explicit model required; Lyapunov-based adaptation ensures closed-loop stability.
- In OpenFAST (Region III): tighter power tracking and reduced structural loads.
- Practical and robust: online learning, bounded errors, resilient to unmodeled dynamics.

\$ Future Work

- Explore **higher-order sliding mode (HOSM)** methods (e.g., super-twisting).
- Physics-informed learning: embed known dynamics; learn only residual
- Evaluate advanced **NN architectures** (LSTM, RNN, etc.).

Conclusion & Future Work

✓ Conclusion

- **Data-based ISMC** with adaptive NNs for FOWTs.
- No explicit model required: Lyapunov-based adaptation ensures closed-loop stability.
- In OpenFAST (Region III): tighter power tracking and reduced structural loads.
- Practical and robust: online learning, bounded errors, resilient to unmodeled dynamics.

\$ Future Work

- **Explore higher-order sliding mode (HOSM)** methods (e.g., super-twisting).
- Physics-informed learning: embed known dynamics; learn only residual.
- Evaluate advanced **NN architectures** (LSTM, RNN, etc.).

"In God we trust; all others must bring data."

- W. Edwards Deming

Thanks for your attention!

To contact me:

moein.sarbandi@ec-nantes.fr

in linkedin.com/in/moeinsarbandi

Scan to visit the DENSE website

