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Motivating example: Convertible drone flight

• Many modern systems are too complex to be reliably
modeled and are also critical systems.

• Convertible drones: highly coupled aerodynamics and
multiple flight regimes

• This motivates the need for robust, data-driven control
strategies.



Introduction

• Incremental Nonlinear Dynamic Inversion (INDI): Relies
on incremental measurements rather than a full model.
Robust, but still model-dependent for tuning.4

• Model-Free Control (MFC): Introduces the ultra-local
model. Simple, robust, but purely data-driven.5

• Restricted Model-Free Control (RMC): Extension of MFC
restricted to flat outputs. Gives physical meaning to the
ultra-local model.6

• Limitations: For systems with symmetries (SE (2),SE (3)),
the standard RMC generally does not preserve them :
coordinate-dependent behavior.

4Reiner & al., Automatica, 1996.; Hachem & al., JGCD, 2025.
5Fliess & Join, Int. J. Control, 2013.
6Fliess & Join, IFAC, 2009.
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Related Work - Control and Symmetries

• Nonlinear methods: Most prominent works are from the
1990s, e.g. Tracking for fully actuated mechanical systems: a
geometric framework by Bullo and Murray.7

• Linear methods: More recent approaches, such as invariant
tracking and stabilization (See P. Rouchon., J. Rudolph)8,
application to quadrotors 9, or exploiting different symmetries
in the estimation field 10.

7Bullo, F., Murray, R. M. (1990), Automatica.
8Rouchon, P., Rudolph, J. (1999), springer.
9Cohen & al. (2020), IEEE Robotics and Automation Letters.

10“Symmetry-preserving obervers”. Bonnabel & al. IEEE-TAC. 2008
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1 Conventional RMC and motivating example

2 Invariant RMC methodology

3 Application to unicyle



The Resticted Model-free Control framework
Nonlinear system with state x(t)

ẋ = f (x , u), y = h(x), x ∈ Rn, u ∈ Rm, y ∈ Rp

• Differentially flat, ∃ a flat output z(t) such that :

x(t) = ϕx(z , ż , . . . , z
(r)), u(t) = ϕu(z , ż , . . . , z

(r)).

• A nominal trajectory : (x⋆(t), u⋆(t)), y⋆(t) = h(x⋆(t))

Ultra local model: e(ν)(t) = F (t) + α(t) δu(t), e = y − y⋆.

Goal: design a control law u(t) = δu(t) + u⋆(t) such that :

δu(t) = α(t)−1
(
F̂ (t)− K (e(t))

)
e(t) = y(t)− y⋆(t) → 0

What about this “linear” error when the state space is a manifold,
a Lie group?
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(r)), u(t) = ϕu(z , ż , . . . , z
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Motivating example : Classical v.s invariant

The unicyle motion ...

ẋp = v cos θ, ẏp = v sin θ, θ̇ = ω.

... is flat with flat output
[
xp yp

]T
.

We can compute the corresponding
nominal orientation θ⋆ and nominal
control input U⋆ = [v⋆, ω⋆]T with :

v⋆ =
√

ẋ⋆ 2
p + ẏ⋆ 2

p

ω⋆ =
ÿ⋆p ẋ

⋆
p − ẍ⋆p ẏ

⋆
p

ẋ⋆ 2
p + ẏ⋆ 2

p

And the linear error :

e =

[
ex
ey

]
=

[
xp − x⋆p
yp − y⋆p

] Figure: The unicyle motion in
the 2D plan



Motivating example : Classical v.s invariant
Ultra-local model (relative degree) :[

ėx
ëy

]
=

[
Fx
Fy

]
+α

[
δv
δω

]
(1)

α matrix, given by HEOL settings7 based on Y ⋆ dynamics:

α =

[
cos(θ⋆) 0

ω⋆ cos(θ⋆) v⋆ cos(θ⋆)

]
(2)

MFC feedback computation, with F̂ an estimate of F :

δU = α−1

(
− F̂ +

[
Kpxex

Kpyey + Kdy ėy

])
(3)

α can not be inverted with cos(θ⋆) = 0

4C., Delaleau, E., and Fliess, M. (2024). Flatness-based control
revisited: The HEOL setting. Comptes Rendus. Mathématique,
362(G12), 1693–1706.



Motivating example : Classical v.s invariant

The nonholonomic car ...

ẋp = v cos θ, ẏp = v sin θ, θ̇ = ω.

... is invariant with respect to SE (2)
the Lie group of rigid body motions
in the plane ⇒ use a Frenet Frame
attached to reference trajectory:

τ =

[
cos θ⋆

sin θ⋆

]
, ν =

[
− sin θ⋆

cos θ⋆

]
.

New error (Frenet frame):

e = R(θ⋆)⊤
(
(xp, yp)− (x⋆p , y

⋆
p )
)
.

Figure: Unicyle motion and
the local frame in the 2D plan



Motivating example : Classical v.s invariant
Adaptation of HEOL settings to use the dynamics of the new
error:

ėτ = v cos(θ − θ⋆)− v ⋆ + ω⋆eν

ëν = vω cos(θ − θ⋆)− v ⋆ω⋆ + v̇ sin θ − θ⋆

− 2ω⋆
(
v cos(θ − θ⋆)− v ⋆

)
− ω̇⋆eτ − ω⋆2eν

The new ultra-local model is given by:[
ėτ
ëν

]
=

[
Fτ

Fν

]
+αinv

[
δv
δω

]
with:

αinv =

[
1 0

−ω⋆ v ⋆

]
”α” depends only on u∗!



Simulation Results

Straight line trajectory Circular trajectory
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Introduction - Lie Groups

A Lie group is a set G such that:

• ∀χ ∈ G , ∃χ−1 ∈ G such that χ−1 ◦ χ = χ ◦ χ−1 = I

• ∀χ1, χ2 ∈ G , χ1 ◦ χ2 ∈ G

• ∀χ1, χ2, χ3 ∈ G , χ1 ◦ (χ2 ◦ χ3) = (χ1 ◦ χ2) ◦ χ3

Ex: Matrix Lie groups:

• SO(2): orientation in the 2D plane

• SE (2): orientation and position in the 2D plane

• SO(3): attitude in 3D space

• SE (3): attitude and position in 3D space



Introduction to Lie Algebra
The Lie algebra of a Lie group G is defined as the tangent space at

I ,(g = TIG ). It is a vector space, and it is isomorphic to Rd .

The mapping:

wedge[·]∧ : Rd 7→ g, vee[·]V : g 7→ Rd

provides the correspondence between
the Lie algebra and the Euclidean
space.

Ex: Lie group χ ∈ SE (2) and its Lie
algebra se(2):

χ =

[
R(θ) p
0 1

]
∈ SE (2), ξ∧ = log(χ) =

0 −θ ρ1
θ 0 ρ2
0 0 0

 ∈ se(2).

The Lie algebra can be seen as a linearization of the Lie group
around the identity of the group I



Dynamics on matrix Lie groups

General form : For a system with configuration χ ∈ G ,

χ̇ = fu(χ), with input u ∈ Rp.

Example: Quadrotor on SE (3)

Ṙ = R ω×, v̇ = g + Ru, ẋ = v ,

attitude R ∈ SO(3), velocity v ∈ R3, position x ∈ R3, input
u ∈ R3.

χ =

R(θ) v x
01,3 1 0
01,3 0 1

 , log(χ) =

(ξ)× u v
01,3 0 0
01,3 0 0

 ∈ se(3), χ̇ = fu(χ).



Ingredients of Invariant RMC on Lie Groups
Invariant error: Given true trajectory χ and reference χd (or χ⋆)

η = χ−1
d χ ∈ G , η = I ⇔ χ = χd

Group-affine dynamics (Bonnabel & al, 2017):
if

fu(gh) = fu(g)h + gfu(h)− gfu(I )h,

then the error is autonomous:

η̇ = fu(η)− fu(I ) η.

Local error dynamics: in logarithmic coordinates ε = log(η),

ε̇ = A(t) ε+ B(t) ũ + r(ε, ũ, t),

with ũ = u − u⋆, and r = O(∥ε∥2 + ∥ε∥∥ũ∥).
• A(t),B(t) depend only on reference (x⋆, u⋆)

• Equivariant linearization: structure-preserving, remainder is
higher order ⇒ locally like a linear control system in ε
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Back to the example: Invariant RMC
Step 1: Small Error Dynamics: For small errors
(ετ , εν , (θ − θd)), the dynamics are given by:

ε̇ ≃ A(t) ε+ B(t) δu.

Step 2: Error in se(2): The error dynamics in se(2):

ξ = (ετ , εν , (θ − θd)), ξ̇ = adυd (ξ) + (υ − υd).

Step 3: Adjoint Action: Adjoint action of υd (from SE (2)):

adυd =

 0 −ω⋆ 0
ω⋆ 0 −v⋆

0 0 0

 .

Step 4: Outputs and Relative Degree: Outputs (ετ , ε̇ν),
relative degree: [

ε̇τ
ε̈ν

]
=

[
Fτ
Fν

]
+

[
1 0

−ω⋆ v⋆

] [
δv
δω

]
.

⇒ Projection recovers Frenet dynamics, linking error and control in
SE (2).
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Conclusion

Summary:

• We extended classical RMC with an invariant framework
for systems on Lie groups.

• This method preserves symmetries and provides
robustness for systems with complex or uncertain models
(e.g., quadrotors).

• The error dynamics in Lie groups allow for convergence
over larger regions than classical methods, improving
stability.

Future Work:

• Extend the framework to other invariant ODEs (e.g.,
using the infinitesimal generator).

• Refine stability guarantees, including uncertainty
estimation.
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