Restricted Model Free Control: toward a geometrical framework

Jean-Philippe Condomines¹
Dynamic Systems and Controls Group, ENAC

Joint work with C. Join² and A.Carrierou ³

ENSEEIHT, 30 septembre 2025

¹jean-philippe.condomines@enac.fr

²CRAN, Université de Lorraine

³ENAC, Université de Toulouse, PhD student

Facilities at ENAC

Motivating example: Convertible drone flight

- Many modern systems are too complex to be reliably modeled and are also critical systems.
- Convertible drones: highly coupled aerodynamics and multiple flight regimes
- This motivates the need for robust, data-driven control strategies.

 Incremental Nonlinear Dynamic Inversion (INDI): Relies on incremental measurements rather than a full model. Robust, but still model-dependent for tuning.⁴

⁴Reiner & al., *Automatica*, 1996.; Hachem & al., *JGCD*, 2025.

⁵Fliess & Join, *Int. J. Control*, 2013.

⁶Fliess & Join, IFAC, 2009.

- Incremental Nonlinear Dynamic Inversion (INDI): Relies on incremental measurements rather than a full model. Robust, but still model-dependent for tuning.⁴
- Model-Free Control (MFC): Introduces the ultra-local model. Simple, robust, but purely data-driven.⁵

⁴Reiner & al., *Automatica*, 1996.; Hachem & al., *JGCD*, 2025.

⁵Fliess & Join, *Int. J. Control*, 2013.

⁶Fliess & Join, IFAC, 2009.

- Incremental Nonlinear Dynamic Inversion (INDI): Relies on incremental measurements rather than a full model. Robust, but still model-dependent for tuning.⁴
- Model-Free Control (MFC): Introduces the ultra-local model. Simple, robust, but purely data-driven.⁵
- Restricted Model-Free Control (RMC): Extension of MFC restricted to flat outputs. Gives physical meaning to the ultra-local model.⁶

⁴Reiner & al., *Automatica*, 1996.; Hachem & al., *JGCD*, 2025.

⁵Fliess & Join, Int. J. Control, 2013.

⁶Fliess & Join, IFAC, 2009.

- Incremental Nonlinear Dynamic Inversion (INDI): Relies on incremental measurements rather than a full model. Robust, but still model-dependent for tuning.⁴
- Model-Free Control (MFC): Introduces the ultra-local model. Simple, robust, but purely data-driven.⁵
- Restricted Model-Free Control (RMC): Extension of MFC restricted to flat outputs. Gives physical meaning to the ultra-local model.⁶
- **Limitations:** For systems with **symmetries** (*SE*(2), *SE*(3)), the standard RMC generally does not preserve them : coordinate-dependent behavior.

⁴Reiner & al., *Automatica*, 1996.; Hachem & al., *JGCD*, 2025.

⁵Fliess & Join, Int. J. Control, 2013.

⁶Fliess & Join, IFAC, 2009.

Related Work - Control and Symmetries

- Nonlinear methods: Most prominent works are from the 1990s, e.g. Tracking for fully actuated mechanical systems: a geometric framework by Bullo and Murray.⁷
- **Linear methods:** More recent approaches, such as invariant tracking and stabilization (See P. Rouchon., J. Rudolph)⁸, application to quadrotors ⁹, or exploiting different symmetries in the estimation field ¹⁰.

⁷Bullo, F., Murray, R. M. (1990), Automatica.

⁸Rouchon, P., Rudolph, J. (1999), springer.

⁹Cohen & al. (2020), IEEE Robotics and Automation Letters.

¹⁰ "Symmetry-preserving obervers". Bonnabel & al. IEEE-TAC. 2008

Plan

1 Conventional RMC and motivating example

2 Invariant RMC methodology

3 Application to unicyle

$$\dot{x} = f(x, u), \quad y = h(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

$$\dot{x} = f(x, u), \quad y = h(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

• **Differentially flat**, \exists a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

$$\dot{x} = f(x, u), \quad y = h(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

• **Differentially flat**, \exists a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

• A nominal trajectory : $(x^*(t), u^*(t)), y^*(t) = h(x^*(t))$

$$\dot{x} = f(x, u), \quad y = h(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

• **Differentially flat**, \exists a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

• A nominal trajectory : $(x^*(t), u^*(t)), y^*(t) = h(x^*(t))$

Ultra local model: $e^{(\nu)}(t) = F(t) + \alpha(t) \delta u(t), e = y - y^*.$

Goal: design a control law $u(t) = \delta u(t) + u^{\star}(t)$ such that :

$$\delta u(t) = \alpha(t)^{-1} \Big(\widehat{F}(t) - K(e(t)) \Big)$$

$$e(t) = \gamma(t) - \gamma^*(t) \to 0$$

The Resticted Model-free Control framework

Nonlinear system with state x(t)

$$\dot{x} = f(x, u), \quad y = h(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

• **Differentially flat**, \exists a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

• A nominal trajectory : $(x^*(t), u^*(t)), y^*(t) = h(x^*(t))$

Ultra local model: $e^{(\nu)}(t) = F(t) + \alpha(t) \delta u(t)$, $e = y - y^*$.

Goal: design a control law $u(t) = \delta u(t) + u^*(t)$ such that :

$$\delta u(t) = \alpha(t)^{-1} \Big(\widehat{F}(t) - K(e(t)) \Big)$$

$$e(t) = y(t) - y^{*}(t) \to 0$$

What about this "linear" error when the state space is a manifold, a Lie group?

Motivating example: Classical v.s invariant

The unicyle motion ...

$$\dot{x}_p = v \cos \theta, \ \dot{y}_p = v \sin \theta, \ \dot{\theta} = \omega.$$

... is flat with flat output
$$\begin{bmatrix} x_p & y_p \end{bmatrix}^T$$
.

We can compute the corresponding nominal orientation θ^* and nominal control input $U^* = [v^*, \omega^*]^T$ with :

$$v^* = \sqrt{\dot{x}_p^* ^2 + \dot{y}_p^* ^2}$$
$$\omega^* = \frac{\ddot{y}_p^* \dot{x}_p^* - \ddot{x}_p^* \dot{y}_p^*}{\dot{x}_p^* ^2 + \dot{y}_p^* ^2}$$

And the linear error:

$$e = \begin{bmatrix} e_{x} \\ e_{y} \end{bmatrix} = \begin{bmatrix} x_{p} - x_{p}^{\star} \\ y_{p} - y_{p}^{\star} \end{bmatrix}$$

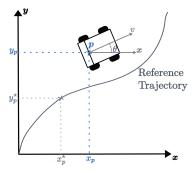


Figure: The unicyle motion in the 2D plan

Motivating example : Classical v.s invariant Ultra-local model (relative degree) :

$$\begin{bmatrix} \dot{\mathbf{e}}_{x} \\ \ddot{\mathbf{e}}_{y} \end{bmatrix} = \begin{bmatrix} F_{x} \\ F_{y} \end{bmatrix} + \alpha \begin{bmatrix} \delta \mathbf{v} \\ \delta \omega \end{bmatrix} \tag{1}$$

 α matrix, given by HEOL settings⁷ based on Y^* dynamics:

$$\alpha = \begin{bmatrix} \cos(\theta^*) & 0\\ \omega^* \cos(\theta^*) & v^* \cos(\theta^*) \end{bmatrix}$$
 (2)

MFC feedback computation, with \hat{F} an estimate of F:

$$\delta \mathbf{U} = \alpha^{-1} \left(-\hat{\mathbf{F}} + \begin{bmatrix} K_{px} ex \\ K_{py} ey + K_{dy} \dot{e}_y \end{bmatrix} \right)$$
(3)

 α can not be inverted with $\cos(\theta^*) = 0$

⁴C., Delaleau, E., and Fliess, M. (2024). Flatness-based control revisited: The HEOL setting. *Comptes Rendus. Mathématique*, 362(G12), 1693–1706.

Motivating example: Classical v.s invariant

The nonholonomic car ...

$$\dot{x}_p = v \cos \theta, \ \dot{y}_p = v \sin \theta, \ \dot{\theta} = \omega.$$

... is invariant with respect to SE(2) the Lie group of rigid body motions in the plane \Rightarrow use a Frenet Frame attached to reference trajectory:

$$\tau = \begin{bmatrix} \cos \theta^\star \\ \sin \theta^\star \end{bmatrix}, \quad \nu = \begin{bmatrix} -\sin \theta^\star \\ \cos \theta^\star \end{bmatrix}.$$

New error (Frenet frame):

$$e = R(\theta^{\star})^{\top} ((x_p, y_p) - (x_p^{\star}, y_p^{\star})).$$

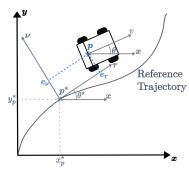


Figure: Unicyle motion and the local frame in the 2D plan

Motivating example: Classical v.s invariant Adaptation of HEOL settings to use the dynamics of the new error:

$$\begin{split} \dot{e}_{\tau} &= v \cos(\theta - \theta^{\star}) - v^{\star} + \omega^{\star} e_{\nu} \\ \ddot{e}_{\nu} &= v \omega \cos(\theta - \theta^{\star}) - v^{\star} \omega^{\star} + \dot{v} \sin \theta - \theta^{\star} \\ &- 2\omega^{\star} (v \cos(\theta - \theta^{\star}) - v^{\star}) - \dot{\omega}^{\star} e_{\tau} - \omega^{\star 2} e_{\nu} \end{split}$$

The new ultra-local model is given by:

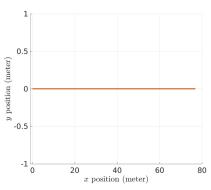
$$\begin{bmatrix} \dot{e}_{\tau} \\ \ddot{e}_{\nu} \end{bmatrix} = \begin{bmatrix} F_{\tau} \\ F_{\nu} \end{bmatrix} + \boldsymbol{\alpha_{\textit{inv}}} \begin{bmatrix} \delta \textit{v} \\ \delta \omega \end{bmatrix}$$

with:

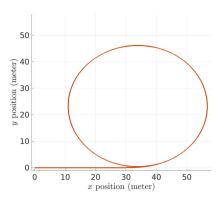
$$oldsymbol{lpha_{ extit{inv}}} = egin{bmatrix} 1 & 0 \ -\omega^{\star} & v^{\star} \end{bmatrix}$$

" α " depends only on $u^*!$

Simulation Results

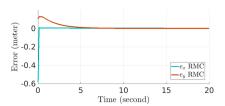


Straight line trajectory

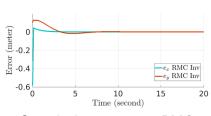


Circular trajectory

Trajectory errors

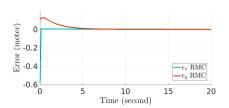


Straight line, classical RMC

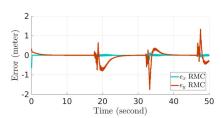


Straight line, invariant RMC

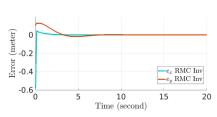
Trajectory errors



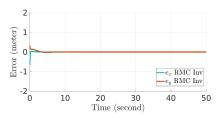
Straight line, classical RMC



Circular trajectory, classical RMC



Straight line, invariant RMC



Circular trajectory, invariant RMC

Introduction - Lie Groups

A Lie group is a set G such that:

- $\forall \chi \in G, \exists \chi^{-1} \in G$ such that $\chi^{-1} \circ \chi = \chi \circ \chi^{-1} = I$
- $\forall \chi_1, \chi_2 \in G, \ \chi_1 \circ \chi_2 \in G$
- $\forall \chi_1, \chi_2, \chi_3 \in G$, $\chi_1 \circ (\chi_2 \circ \chi_3) = (\chi_1 \circ \chi_2) \circ \chi_3$

Ex: Matrix Lie groups:

- SO(2): orientation in the 2D plane
- SE(2): orientation and position in the 2D plane
- SO(3): attitude in 3D space
- SE(3): attitude and position in 3D space

Introduction to Lie Algebra

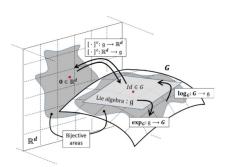
The Lie algebra of a Lie group G is defined as the tangent space at $(\mathfrak{h} = T_1 G)$. It is a **vector space**, and it is isomorphic to \mathbb{R}^d .

The mapping:

$$\mathsf{wedge}[\cdot]^{\wedge} : \mathbb{R}^d \mapsto \mathfrak{g}, \, \mathsf{vee}[\cdot]^V : \mathfrak{g} \mapsto \mathbb{R}^d$$

provides the correspondence between the Lie algebra and the Euclidean space.

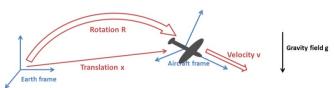
Ex: Lie group $\chi \in SE(2)$ and its Lie algebra $\mathfrak{se}(2)$:



$$\chi = \begin{bmatrix} R(\theta) & \rho \\ 0 & 1 \end{bmatrix} \in SE(2), \qquad \xi^{\wedge} = \log(\chi) = \begin{bmatrix} 0 & -\theta & \rho_1 \\ \theta & 0 & \rho_2 \\ 0 & 0 & 0 \end{bmatrix} \in \mathfrak{se}(2).$$

The Lie algebra can be seen as a linearization of the Lie group around the identity of the group I

Dynamics on matrix Lie groups



General form : For a system with configuration $\chi \in \mathcal{G}$,

$$\dot{\chi} = f_u(\chi)$$
, with input $u \in \mathbb{R}^p$.

Example: Quadrotor on SE(3)

$$\dot{R} = R \omega^{\times}, \quad \dot{v} = g + Ru, \quad \dot{x} = v,$$

attitude $R \in SO(3)$, velocity $v \in \mathbb{R}^3$, position $x \in \mathbb{R}^3$, input $u \in \mathbb{R}^3$.

$$\chi = \begin{pmatrix} R(\theta) & v & x \\ 0_{1,3} & 1 & 0 \\ 0_{1,3} & 0 & 1 \end{pmatrix}, \log(\chi) = \begin{pmatrix} (\xi)_{\times} & u & v \\ 0_{1,3} & 0 & 0 \\ 0_{1,3} & 0 & 0 \end{pmatrix} \in \mathfrak{se}(3), \quad \dot{\chi} = f_u(\chi).$$

Ingredients of Invariant RMC on Lie Groups

Invariant error: Given true trajectory χ and reference χ_d (or χ^*)

$$\eta = \chi_d^{-1} \chi \in \mathcal{G}, \qquad \eta = I \iff \chi = \chi_d$$

Ingredients of Invariant RMC on Lie Groups

Invariant error: Given true trajectory χ and reference χ_d (or χ^*)

$$\eta = \chi_d^{-1} \chi \in \mathcal{G}, \qquad \eta = I \iff \chi = \chi_d$$

Group-affine dynamics (Bonnabel & al, 2017): if

$$f_u(gh) = f_u(g)h + gf_u(h) - gf_u(I)h,$$

then the error is autonomous:

$$\dot{\eta} = f_u(\eta) - f_u(I) \, \eta.$$

Ingredients of Invariant RMC on Lie Groups

Invariant error: Given true trajectory χ and reference χ_d (or χ^*)

$$\eta = \chi_d^{-1} \chi \in \mathcal{G}, \qquad \eta = I \iff \chi = \chi_d$$

Group-affine dynamics (Bonnabel & al, 2017): if

$$f_u(gh) = f_u(g)h + gf_u(h) - gf_u(I)h,$$

then the error is autonomous:

$$\dot{\eta} = f_u(\eta) - f_u(I) \, \eta.$$

Local error dynamics: in logarithmic coordinates $\varepsilon = \log(\eta)$,

$$\dot{\varepsilon} = A(t)\,\varepsilon + B(t)\,\tilde{u} + r(\varepsilon,\tilde{u},t),$$

with $\tilde{u} = u - u^*$, and $r = O(\|\varepsilon\|^2 + \|\varepsilon\| \|\tilde{u}\|)$.

- A(t), B(t) depend only on reference (x^*, u^*)
- Equivariant linearization: structure-preserving, remainder is higher order ⇒ locally like a linear control system in ε

Step 1: Small Error Dynamics: For small errors

 $(\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d))$, the dynamics are given by:

$$\dot{\varepsilon} \simeq A(t) \varepsilon + B(t) \delta u$$
.

Step 1: Small Error Dynamics: For small errors

 $(\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d))$, the dynamics are given by:

$$\dot{\varepsilon} \simeq A(t) \varepsilon + B(t) \delta u$$
.

Step 2: Error in $\mathfrak{se}(2)$: The error dynamics in $\mathfrak{se}(2)$:

$$\dot{\xi} = (\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d)), \quad \dot{\xi} = \operatorname{ad}_{v_d}(\xi) + (v - v_d).$$

Step 1: Small Error Dynamics: For small errors

 $(\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d))$, the dynamics are given by:

$$\dot{\varepsilon} \simeq A(t) \varepsilon + B(t) \delta u$$
.

Step 2: Error in $\mathfrak{se}(2)$: The error dynamics in $\mathfrak{se}(2)$:

$$\xi = (\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d)), \quad \dot{\xi} = \operatorname{ad}_{\upsilon_d}(\xi) + (\upsilon - \upsilon_d).$$

Step 3: Adjoint Action: Adjoint action of v_d (from SE(2)):

$$\mathrm{ad}_{v_d} = \begin{bmatrix} 0 & -\omega^\star & 0 \\ \omega^\star & 0 & -v^\star \\ 0 & 0 & 0 \end{bmatrix}.$$

Step 1: Small Error Dynamics: For small errors $(\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d))$, the dynamics are given by:

$$\dot{\varepsilon} \simeq A(t) \varepsilon + B(t) \delta u.$$

Step 2: Error in $\mathfrak{se}(2)$: The error dynamics in $\mathfrak{se}(2)$:

$$\xi = (\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d)), \quad \dot{\xi} = \operatorname{ad}_{\upsilon_d}(\xi) + (\upsilon - \upsilon_d).$$

Step 3: Adjoint Action: Adjoint action of v_d (from SE(2)):

$$\mathsf{ad}_{v_d} = \begin{bmatrix} 0 & -\omega^\star & 0 \\ \omega^\star & 0 & -v^\star \\ 0 & 0 & 0 \end{bmatrix}.$$

Step 4: Outputs and Relative Degree: Outputs $(\varepsilon_{\tau}, \dot{\varepsilon}_{\nu})$, relative degree:

$$\begin{bmatrix} \dot{\varepsilon}_{\tau} \\ \ddot{\varepsilon}_{\nu} \end{bmatrix} = \begin{bmatrix} F_{\tau} \\ F_{\nu} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ -\omega^{\star} & \mathbf{v}^{\star} \end{bmatrix} \begin{bmatrix} \delta \mathbf{v} \\ \delta \omega \end{bmatrix}.$$

Step 1: Small Error Dynamics: For small errors

 $(\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d))$, the dynamics are given by:

$$\dot{\varepsilon} \simeq A(t) \varepsilon + B(t) \delta u$$
.

Step 2: Error in $\mathfrak{se}(2)$: The error dynamics in $\mathfrak{se}(2)$:

$$\dot{\xi} = (\varepsilon_{\tau}, \varepsilon_{\nu}, (\theta - \theta_d)), \quad \dot{\xi} = \operatorname{ad}_{\upsilon_d}(\xi) + (\upsilon - \upsilon_d).$$

Step 3: Adjoint Action: Adjoint action of v_d (from SE(2)):

$$\mathsf{ad}_{v_d} = \begin{bmatrix} 0 & -\omega^\star & 0 \\ \omega^\star & 0 & -v^\star \\ 0 & 0 & 0 \end{bmatrix}.$$

Step 4: Outputs and Relative Degree: Outputs $(\varepsilon_{\tau}, \dot{\varepsilon}_{\nu})$, relative degree:

$$\begin{bmatrix} \dot{\varepsilon}_{\tau} \\ \ddot{\varepsilon}_{\nu} \end{bmatrix} = \begin{bmatrix} F_{\tau} \\ F_{\nu} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ -\omega^{\star} & \mathbf{v}^{\star} \end{bmatrix} \begin{bmatrix} \delta \mathbf{v} \\ \delta \omega \end{bmatrix}.$$

 \Rightarrow Projection recovers Frenet dynamics, linking error and control in SE(2).

Nonlinear system with state $\chi(t)$

$$\dot{\chi} = f_u(\chi), \quad y = h(\chi), \quad \chi \in G, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

Nonlinear system with state $\chi(t)$

$$\dot{\chi} = f_u(\chi), \quad y = h(\chi), \quad \chi \in G, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

Differentially flat, ∃ a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

Nonlinear system with state $\chi(t)$

$$\dot{\chi} = f_u(\chi), \quad y = h(\chi), \quad \chi \in G, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

Differentially flat, ∃ a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

• A nominal trajectory : $(x_d(t), u_d(t)), y_d(t) = h(x_d(t))$

Nonlinear system with state $\chi(t)$

$$\dot{\chi} = f_u(\chi), \quad y = h(\chi), \quad \chi \in G, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$$

Differentially flat, ∃ a flat output z(t) such that :

$$x(t) = \phi_x(z, \dot{z}, \dots, z^{(r)}), \quad u(t) = \phi_u(z, \dot{z}, \dots, z^{(r)}).$$

• A nominal trajectory : $(x_d(t), u_d(t)), y_d(t) = h(x_d(t))$

Ultra local model:
$$\varepsilon^{(\nu)}(t) = F(t) + \alpha(t) \, \delta u(t), \, \varepsilon = \log(\chi_d^{-1}\chi)^V$$

Goal: design a control law $u(t) = \delta u(t) + u_d(t)$ such that :

$$\delta u(t) = \alpha(t)^{-1} \Big(\widehat{F}(t) - K(\varepsilon(t)) \Big)$$
$$\varepsilon = \log(\chi_d^{-1} \chi)^V \to 0$$

Summary:

- We extended classical RMC with an invariant framework for systems on Lie groups.
- This method preserves symmetries and provides robustness for systems with complex or uncertain models (e.g., quadrotors).
- The error dynamics in Lie groups allow for convergence over larger regions than classical methods, improving stability.

Future Work:

- Extend the framework to other invariant ODEs (e.g., using the infinitesimal generator).
- Refine stability guarantees, including uncertainty estimation.