Restricted Model Free Control : toward a
geometrical framework

Jean-Philippe Condomines!

Dynamic Systems and Controls Group, ENAC

Joint work with C. Join? and A.Carrierou 3

ENSEEIHT, 30 septembre 2025

ljean-philippe.condomines@enac.fr
2CRAN, Université de Lorraine
3ENAC, Université de Toulouse, PhD student



Facilities at ENAC




Motivating example: Convertible drone flight

® Many modern systems are too complex to be reliably
modeled and are also critical systems.

e Convertible drones: highly coupled aerodynamics and
multiple flight regimes

® This motivates the need for robust, data-driven control
strategies.
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on incremental measurements rather than a full model.
Robust, but still model-dependent for tuning.*
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Introduction

¢ Incremental Nonlinear Dynamic Inversion (INDI): Relies
on incremental measurements rather than a full model.
Robust, but still model-dependent for tuning.*

* Model-Free Control (MFC): Introduces the ultra-local
model. Simple, robust, but purely data-driven.5

* Restricted Model-Free Control (RMC): Extension of MFC
restricted to flat outputs. Gives physical meaning to the
ultra-local model.®

¢ Limitations: For systems with symmetries (SE(2), SE(3)),
the standard RMC generally does not preserve them :
coordinate-dependent behavior.

4Reiner & al., Automatica, 1996.: Hachem & al., JGCD, 2025.
5Fliess & Join, Int. J. Control, 2013.
6Fliess & Join, IFAC, 2009.



Related Work - Control and Symmetries

® Nonlinear methods: Most prominent works are from the
1990s, e.g. Tracking for fully actuated mechanical systems: a
geometric framework by Bullo and Murray.’

® Linear methods: More recent approaches, such as invariant
tracking and stabilization (See P. Rouchon., J. Rudolph)?2,
application to quadrotors ?, or exploiting different symmetries
in the estimation field 1.

"Bullo, F., Murray, R. M. (1990), Automatica.

8Rouchon, P., Rudolph, J. (1999), springer.

9Cohen & al. (2020), IEEE Robotics and Automation Letters.
10“Symmetry-preserving obervers’. Bonnabel & al. IEEE-TAC. 2008
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@ Conventional RMC and motivating example
@ Invariant RMC methodology

© Application to unicyle




The Resticted Model-free Control framework

Nonlinear system with state x(t)
x="f(x,u), y=h(x), xeR" ueR™ yecRP



The Resticted Model-free Control framework

Nonlinear system with state x(t)
x="f(x,u), y=h(x), xeR" ueR™ yecRP

¢ Differentially flat, 3 a flat output z(t) such that :

x(t) = dul(2,2,-.,20), u(t) = bu(z,2,...,20).



The Resticted Model-free Control framework

Nonlinear system with state x(t)
x="f(x,u), y=h(x), xeR" ueR™ yecRP

¢ Differentially flat, 3 a flat output z(t) such that :
x(t) = ¢x(z,2,... ,z(r)), u(t) = ou(z,z,. .. ,z(’)).

* A nominal trajectory : (x*(t), u*(t)), y*(t) = h(x*(t))



The Resticted Model-free Control framework

Nonlinear system with state x(t)
x="f(x,u), y=h(x), xeR" ueR™ yecRP

¢ Differentially flat, 3 a flat output z(t) such that :
x(t) = ¢x(z,2,... ,z(r)), u(t) = ou(z,z,. .. 7z(’)).

* A nominal trajectory : (x*(t), u*(t)), y*(t) = h(x*(t))

Ultra local model: e(")(t) = F(t) + a(t)du(t), e =y — y*.

Goal: design a control law u(t) = du(t) + u*(t) such that :
ou(t) = aft)” ( — K(e(t)
e(t ) y(t) = y*(t) = 0



The Resticted Model-free Control framework

Nonlinear system with state x(t)
x="f(x,u), y=h(x), xeR" ueR™ yecRP

¢ Differentially flat, 3 a flat output z(t) such that :

x(t) = ¢u(z,2,...,200),  u(t) = ¢u(z,2,...,20").

* A nominal trajectory : (x*(t), u*(t)), y*(t) = h(x*(t))

Ultra local model: e(")(t) = F(t) + a(t)du(t), e =y — y*.

Goal: design a control law u(t) = du(t) + u*(t) such that :
su(t) = a(t)}(F(e) — K(e(®)))
e(t) =y(t) —y*(t) = 0

What about this “linear” error when the state space is a manifold,
a Lie group?



Motivating example : Classical v.s invariant

The unicyle motion ...

Xp = vcost, y, =vsinf, 0 =w.

. is flat with flat output [xp yp] T

We can compute the corresponding
nominal orientation 6* and nominal
control input U* = [v*,w*]T with :
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Figure: The unicyle motion in
the 2D plan



Motivating example : Classical v.s invariant
Ultra-local model (relative degree) :

H-Elel] o

a matrix, given by HEOL settings’ based on Y* dynamics:

- LD o)

MFC feedback computation, with F an estimate of F:

- Kpxex
SU=a'| —F+ [ P ] 3
“ ( Kpyey + Kayéy G)

a can not be inverted with cos(6*) = 0

4C., Delaleau, E., and Fliess, M. (2024). Flatness-based control
revisited: The HEOL setting. Comptes Rendus. Mathématique,
362(G12), 1693-1706.



Motivating example : Classical v.s invariant

The nonholonomic car ...

Xp =vcost, y, =vsinf, 0 = w.

AY
. . . . v Y

. s invariant Wlt.h respect to SE(2) IE N
the Lie group of rigid body motions L
in the plane = use a Frenet Frame N er Reference

. P Trajectory

attached to reference trajectory: il A
L cos §* L —sin 6*

~|sinf*|" 7 | cosO* | g

T >

New error (Frenet frame): Figure: Unicyle motion and

the local frame in the 2D plan
e = R(0%)" (%, ¥p) — (x3.%7))-



Motivating example : Classical v.s invariant

Adaptation of HEOL settings to use the dynamics of the new
error:

é =vcos(d —0") — v +w'e,
é, = vwcos(f — %) — v'w* 4 vsinf — 6
—2w*(veos(f — 0%) — v*) — e, — wte,

The new ultra-local model is given by:

o] =[7] - am |3]

ainv - * *
—Ww v

"' depends only on u*!

with:
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Trajectory errors
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Introduction - Lie Groups

A Lie group is a set G such that:
e Yy € G, Iy e Gsuchthat y loy=xox =1
®* Vx1,x2 € G, x10x2€ G

® Vx1,Xx2,Xx3 € G, x10(x20x3) = (x10x2) X3

Ex: Matrix Lie groups:
): orientation in the 2D plane
): orientation and position in the 2D plane
® SO(3): attitude in 3D space
)

. attitude and position in 3D space



Introduction to Lie Algebra

The Lie algebra of a Lie group G is defined as the tangent space at
(b= T;G). It is a vector space, and it is isomorphic to RY.

The mapping:
wedge[]" : R? — g, vee[]V : g — RY

provides the correspondence between
the Lie algebra and the Euclidean
space.

Ex: Lie group x € SE(2) and its Lie
algebra se(2):

0 =0 m
X = [R(‘g) ”] €SE(2), & =log(x)= [0 0 pof €se(2)
0 1 0 0 0

The Lie algebra can be seen as a linearization of the Lie group
around the identity of the group /



Dynamics on matrix Lie groups

Rotation R

Gravity field g
Velocity v
Aircfaft frame

Translation x

Earth frame

General form : For a system with configuration y € G,
X = fu(x), withinput ueRP.
Example: Quadrotor on SE(3)
R=Rw*, v=g+Ru, x=v,

attitude R € SO(3), velocity v € R3, position x € R3, input
uecR3

R(O) v x (E)x u v
x = |03 1 0],log(x) =013 0 0] ese3), x=rf(x)-
013 0 1 013 0 0
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Ingredients of Invariant RMC on Lie Groups
Invariant error: Given true trajectory y and reference x4 (or x*)
n=x4'x€G,  n=1 & x=xd

Group-affine dynamics (Bonnabel & al, 2017):
if
fu(gh) = fu(g)h + gfu(h) - gfu(l)ha
then the error is autonomous:
n= fu(n) - fu(/) n.
Local error dynamics: in logarithmic coordinates ¢ = log(n),
e=A(t)e+ B(t)i+r(e, d,t),
with i = u — u*, and r = O(||¢|? + ||]|||di])).
e A(t), B(t) depend only on reference (x*, u*)

® Equivariant linearization: structure-preserving, remainder is
higher order = locally like a linear control system in ¢



Back to the example: Invariant RMC

Step 1: Small Error Dynamics: For small errors
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Back to the example: Invariant RMC
Step 1: Small Error Dynamics: For small errors
(er,eu,(0 — 04)), the dynamics are given by:
¢ ~ A(t)e+ B(t)du.
Step 2: Error in se¢(2): The error dynamics in se(2):

5: (€T,€V,(0—0d)), fzadvd(£)+(U—Ud).
Step 3: Adjoint Action: Adjoint action of vy (from SE(2)):

0 —w* 0
ad,, = [w* 0 —v*
0 0 0

Step 4: Outputs and Relative Degree: Outputs (¢-,¢,),

relative degree:
x|l |Fr n 1 0] |dov
gl |F, —w* v |w]

= Projection recovers Frenet dynamics, linking error and control in
SE(2).
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The Invariant Resticted Model-free Control

framework
Nonlinear system with state x(t)

X = fulx), y=h(x), xe€G ueR™ yeRP
¢ Differentially flat, 3 a flat output z(t) such that :
x(t) = dx(z,2,...,20),  u(t) = pu(z,2,...,2).

® A nominal trajectory : (x4(t), ug(t)), ya(t) = h(xq4(t))

Ultra local model: ¢)(t) = F(t) + a(t)du(t), ¢ = log(x, ' x)”

Goal: design a control law u(t) = du(t) + ug(t) such that :

su(t) = a(t)(F(t) - K(=(1)))
e =log(xgz'x)" = 0



Conclusion

Summary:
® We extended classical RMC with an invariant framework
for systems on Lie groups.
® This method preserves symmetries and provides
robustness for systems with complex or uncertain models
(e.g., quadrotors).
® The error dynamics in Lie groups allow for convergence
over larger regions than classical methods, improving
stability.
Future Work:
e Extend the framework to other invariant ODEs (e.g.,
using the infinitesimal generator).
® Refine stability guarantees, including uncertainty
estimation.
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