A nonlinear KKL framework for theoretical analysis and guarantees of neural network observers

V. Andrieu

Works in collaboration with P. Bernard, L. Brivadis, V. Pachy, L. Praly

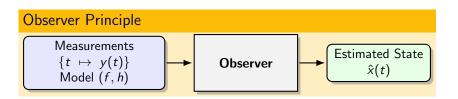
Approaching the observation problem

The Observation Problem

Estimate the state variables x from the measured variables y.

- ► The algorithm solving this problem is called an **observer**.
- ▶ It uses a **posteriori information**: the real-time measurements y(t).
- ▶ It also uses a **priori information**: a mathematical model of the system.

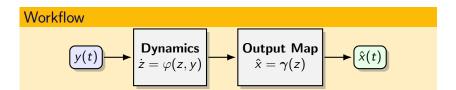
$$\dot{x} = f(x), \quad y = h(x), \quad x \in \mathbb{R}^n$$



Dynamic Observer Approach

Principle

- ▶ Measurement history is stored in an internal, finite-dim. state (z).
- ▶ The state estimate \hat{x} is a static **function** of this internal state.



Key Question: How to design φ and γ for a good estimate?

Asking a computer science expert to solve the problem

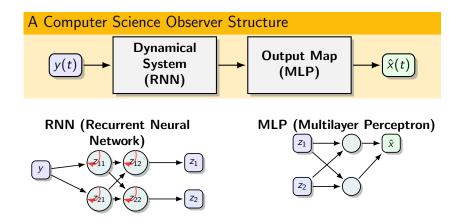
The case of linear activation functions

The case of nonlinear activation functions

Why use nonlinear activation functions?

Conclusion

A Popular Approach in Computer Science



A Universal Approach

- ► The structure (*RNN*, *MLP*) depends on two key elements:
 - ightharpoonup Activation functions, denoted σ .
 - ightharpoonup A set of **parameters** (weights, biases), denoted Ω.

A Universal Approach

- ► The structure (*RNN*, *MLP*) depends on two key elements:
 - ightharpoonup Activation functions, denoted σ .
 - \blacktriangleright A set of **parameters** (weights, biases), denoted Ω .
- ▶ A general continuous-time model for the RNN dynamics is given by:

$$\dot{z} = \mathbf{W_0} \sigma (\mathbf{W_1} z + \mathbf{W_2} y + \mathbf{b})$$

The Computer Science Method: Supervised Learning

The parameters Ω are typically "learned" from data/model in two steps:

- 1. Define a **cost function** that quantifies the estimation error (e.g., $|\hat{x} x|^2$).
- 2. Optimize the parameters Ω to minimize this cost, usually via gradient descent.

The Control Theory Perspective

This data-driven approach often works, but it raises crucial questions: Can we give a formal **guarantee** of convergence? Is the observer **tunable**?

Tunable Observers

Definition: A Tunable Observer Structure

A structure is called **tunable** if for any desired precision ($\epsilon > 0$) and convergence time ($t_o > 0$)...

Given: A compact set of initial states \mathcal{X} , a time t_o , and a threshold ϵ .

Tunable Observers

Definition: A Tunable Observer Structure

A structure is called **tunable** if for any desired precision ($\epsilon > 0$) and convergence time ($t_o > 0$)...

Given: A compact set of initial states \mathcal{X} , a time t_o , and a threshold ϵ .

...we can prove the existence of parameters Ω that provide the following guarantee:

Guarantee: There **exist** parameters Ω such that for any initial condition in a compact set:

$$|\hat{x}(t) - x(t)| \le \epsilon, \quad \forall t > t_o$$

The Central Question of this Talk

For which classes of activation functions σ can we formally prove this existence guarantee?

Asking a computer science expert to solve the problem

The case of linear activation functions

The case of nonlinear activation functions

Why use nonlinear activation functions?

Conclusion

A particular case: Linear activation

Taking a linear activation function $\sigma(v) = v$ in the RNN and choosing specific weights:

$$\dot{z}_i = W_0 \sigma (W_1 z_i + W_2 y + W_3) \quad \Rightarrow \quad \dot{z}_i = k \lambda_i z_i + y, \quad i = 1, \dots, m$$

 \Rightarrow We recognize the dynamics of a KKL observer.

KKL Paradigm:

If the system is observable, by picking m sufficiently large, there exists a map $\mathbf{T}^{\mathrm{inv}}: \mathbb{R}^m \mapsto \mathbb{R}^n$ such that $\hat{x}(t) = \mathbf{T}^{\mathrm{inv}}(z(t))$ gives an asymptotic observer!

- ► Local version: Shoshitaishvili (1990), Kazantzis-Kravaris (1998)
- ► Global version: Kreisselmeier-Engel (2003), Andrieu-Praly (2006), Brivadis-Andrieu-Bernard-Serres (2022)
- ► Time-varying version: Bernard-Andrieu (2019)
- ▶ Discrete-time version: Tran-Bernard (2024)

KKL Observers: Step 1

Given *m* linear filters:

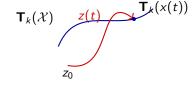
$$\dot{z}_i = k\lambda_i z_i + y$$
, $k > 0, \lambda_i < 0$ $i = 1, ..., m$

The filter's state z(t) converges to a function of the system's state x(t) (for bounded trajectories).

Theorem (VA-Praly, 2006)

There exists a C^0 map $\mathbf{T}_k : \mathbb{R}^n \mapsto \mathbb{R}^m$ such that for a constant C:

$$|z(t)-\mathbf{T}_k(x(t))| \leq Ce^{-k\min_i|\lambda_i|t}|z_0-\mathbf{T}_k(x_0)|$$



 \Rightarrow If T_k is invertible, we can recover x from z!

KKL observers: Invertibility of T_k

Step 2: Ensure T_k is invertible by choosing k large enough.

Assumption: Differential observability on ${\mathcal X}$

There exists an integer $m \geq 1$ such that the map $\mathbf{H}_m : \mathbb{R}^n \to \mathbb{R}^m$ defined by:

$$\mathbf{H}_m: \mathbf{x} \mapsto \begin{pmatrix} h(\mathbf{x}) & L_f h(\mathbf{x}) & \dots & L_f^{m-1} h(\mathbf{x}) \end{pmatrix}^{\top}$$

is Lipschitz injective on \mathcal{X} .

Theorem (Andrieu-Praly, 2006; Andrieu, 2014)

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact invariant set. Under the observability assumption, there exists $k^* > 0$ such that for all $k \geq k^*$, the map \mathbf{T}_k is C^1 and Lipschitz injective.

If T_k is injective, there exists an inverse map T^{inv} such that $T^{\text{inv}}(T_k(x)) = x$.

KKL observers: The final result

An (asymptotic) observer is given by:

$$\hat{x}(t) = \mathbf{T}^{\text{inv}}(z(t)), \quad \dot{z}_i = k\lambda_i z_i + y, \quad i = 1, \ldots, m$$

Theorem (Andrieu, 2014)

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact invariant set. There exists $k^* > 0$ such that for all $k \geq k^*$, there exists a C^1 mapping $\mathbf{T}^{\mathrm{inv}} : \mathbb{R}^m \mapsto \mathbb{R}^n$ and a constant C such that

$$|\mathbf{T}^{\mathrm{inv}}(z(t)) - x(t)| \leq C e^{-k \min_i |\lambda_i| t} (|z_0 - \mathbf{T}_k(x_0)|), \quad \forall (z_0, x_0) \in \mathbb{R}^m \times \mathcal{X}.$$

 \Rightarrow For each (ϵ, t_o) , there exists k^* such that for all $k \geq k^*$:

$$|\mathbf{T}^{\mathrm{inv}}(z(t)) - x(t)| \leq \epsilon, \quad \forall t > t_o, \quad \forall (x_0, z_0) \in \mathcal{X} \times \mathcal{Z}_0$$

 \Rightarrow We have a **tunable** asymptotic observer.

Question: How do we compute **T**^{inv}?

MLP as an Approximator of $\mathbf{T}^{\mathrm{inv}}$

The KKL observer provides a theoretical map $\mathbf{T}^{\mathrm{inv}}$, but it is generally impossible to compute analytically.

However, since $\mathbf{T}^{\mathrm{inv}}$ is a smooth function (C^1), we can approximate it!

Universal Approximation Theorem (Cybenko, 1989)

An MLP can approximate any continuous function to any desired precision ϵ on a compact set.

Consequence on the Total Error

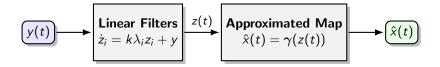
The total estimation error can be split into two parts:

$$|\hat{x}(t) - x(t)| \leq \underbrace{|\gamma(z(t)) - \mathbf{T}^{\mathrm{inv}}(z(t))|}_{\mathsf{Approximation Error}} + \underbrace{|\mathbf{T}^{\mathrm{inv}}(z(t)) - x(t)|}_{\mathsf{Convergence Error}}$$

We control the first term by augmenting the MLP, and the second by tuning the observer gain k.

Conclusion for the Linear Case: A Tunable Structure

By combining the KKL linear filters with an MLP as a universal approximator, we obtain a complete and practical observer structure.



Main Conclusion

The combined **Linear Filter** + **MLP** architecture is a tunable observer structure. It possesses theoretical convergence guarantees while being practically implementable.

Asking a computer science expert to solve the problem

The case of linear activation functions

The case of nonlinear activation functions

Why use nonlinear activation functions?

Conclusion

Starting Point: RNNs as Contracting Systems

Recent work has provided a crucial bridge between Recurrent Neural Networks and control theory.

Key Result (e.g., Galimberti et al. 2023)

Under certain conditions on the activation functions (σ) and weight matrices (Ω) , it is possible to guarantee that a continuous-time RNN behaves as a **contracting system**.

RNN with specific σ, Ω

 \Longrightarrow

A Guaranteed Contracting System

Our Approach

We model the RNN part of our observer as a general contracting system, making the contraction rate tunable with a high gain parameter k.

Our Working Hypothesis: The Model

We formalize the observer dynamics as:

$$\dot{z} = k \cdot g(z, y)$$

with $k \gg 1$ (high gain) and a base dynamics g(z, y).

Key Assumptions on g(z, y)

1. Contraction Property: Ensures stability and convergence to a unique solution.

$$\frac{\partial g}{\partial z} + \left(\frac{\partial g}{\partial z}\right)^{\top} \le -2I_m$$

2. Sufficient Smoothness: The partial derivatives of g are assumed to be bounded.

Allows analysis via Contraction Theory.

Nonlinear Case, Step 1: Convergence

Principle (from Contraction Theory)

- For any bounded input y(t), our contracting filter has a unique, exponentially attractive, bounded solution: $\theta_*(t)$.
- ▶ Ref: Pavlov et al., 2004, Praly 2025 for its regularity

Our Definition of the Map T_k

We define our map by identifying it with this unique solution:

$$\mathbf{T}_k(x(t)) := \boldsymbol{\theta}_*(t)$$

Formal Result (Andrieu, Bernard, Brivadis, Praly, 2025)

This construction yields the exponential convergence guarantee:

$$|z(t) - \mathbf{T}_k(x(t))| \le Ce^{-\alpha k \min_i |\lambda_i|t} |z_0 - \mathbf{T}_k(x_0)|.$$

Step 2, Part A: The Filter Rank Condition

In addition to system observability, we need a structural condition on the filter itself to guarantee injectivity.

Assumption 2: Filter Rank Condition

The filter's base dynamics g(z, y) must have a sufficiently "rich" structure.

- Let $\varphi_0(y)$ be the unique solution to $g(\varphi_0(y), y) = 0$.
- We construct a matrix C(y) from the Jacobians of g evaluated at this point:

$$C(y) = \left(\dots \left[\frac{\partial g}{\partial z} \right]^{-i} \frac{\partial g}{\partial y} \dots \right)_{i=1..m-1}$$

Condition: This matrix C(y) must be **left-invertible**.

Practical Implication for RNNs

This condition, while technical, is not restrictive. It can be **generically** satisfied by an appropriate choice of the RNN's weight matrices (Ω) .

Step 2, Part B: The Injectivity Result

With both assumptions (System Observability & Filter Rank) now in place, we obtain the main injectivity theorem.

Theorem (Andrieu, Bernard, Brivadis, Praly, 2025)

There exists $k^* > 0$ such that for all $k \ge k^*$:

- ✓ The map T_k becomes C^1 and Lipschitz injective.
- \checkmark This guarantees the existence of a stable inverse map $\mathbf{T}^{\mathrm{inv}}$.

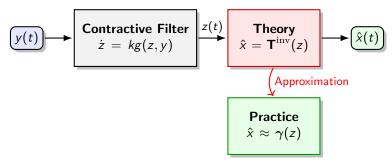
Final Consequence

The existence of $\mathbf{T}^{\mathrm{inv}}$ allows us to define the observer and prove its exponential convergence:

$$|\hat{x}(t) - x(t)| \le Ce^{-\alpha k \min_i |\lambda_i|t} |z_0 - \mathbf{T}_k(x_0)|$$

Conclusion for the Nonlinear Case

- ▶ Like the linear case, the map **T**^{inv} exists and is smooth (Lipschitz).
- ▶ Problem: Not analytically computable.
- ► Solution: Approximate it with a Multilayer Perceptron (MLP).



Main Result

- ✓ The Nonlinear Filter + MLP architecture is a tunable observer.
- ✓ Backed by formal guarantees (convergence & injectivity).
- ✓ Practically implementable.

Asking a computer science expert to solve the problem

The case of linear activation functions

The case of nonlinear activation functions

Why use nonlinear activation functions?

Conclusion

Linear vs. Nonlinear Activation for the RNN

For both linear and monotonic nonlinear activation functions, we get a tunable observer structure.

So, is it better to use linear or nonlinear functions?

Consider a linear KKL observer: $\dot{z}_i = k\lambda_i z_i + y$. There is a well-known trade-off:

- ► If *k* is large:
 - Convergence rate is high.
 - ► Sensitivity to measurement noise is high.
- ightharpoonup If k is small:
 - ► Convergence rate is slow.
 - Robustness to measurement noise is better.

Question: How can we combine the advantages of both?

A nonlinear gain scheduling approach

We want an observer that is:

- **Fast** during the transient phase (when the error z y is large).
- ▶ **Slow/robust** at steady state (when the error z y is small).

A possible nonlinear structure for the filter that achieves this is:

$$\dot{z} = \lambda \left(\underbrace{a_{\mathsf{fast}}(z - y)}_{\mathsf{High-gain \ term}} + \underbrace{(a_{\mathsf{slow}} - a_{\mathsf{fast}}) \tanh(z - y)}_{\mathsf{Saturation \ for \ small \ errors}}\right)$$

This defines a monotonic function $\sigma(z, y)$!

$$\sigma(z,y) = a_{\mathsf{fast}}(z-y) + (a_{\mathsf{slow}} - a_{\mathsf{fast}}) \tanh(z-y)$$

 \Rightarrow Our theoretical results apply, and we can learn the mapping ${f T}^{\rm inv}.$

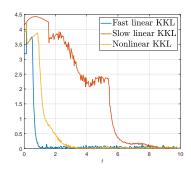
Simulation example: Duffing oscillator

Consider a nonlinear Duffing oscillator:

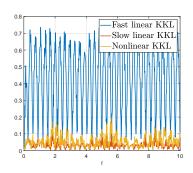
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -0.2x_1 - x_1^3 \end{cases}, \quad y = x_1.$$

We compare three activation functions:

- 1. Nonlinear: $\dot{z} = \lambda (a_{\text{fast}}(z y) + (a_{\text{slow}} a_{\text{fast}}) \tanh(z y))$
- 2. Fast Linear: $\dot{z} = \lambda a_{\text{fast}}(z y)$
- 3. Slow Linear: $\dot{z} = \lambda a_{slow}(z y)$



(a) Scenario 1: Convergence without noise. The nonlinear observer is as fast



(b) Scenario 2: Estimation with measurement noise. The nonlinear

In Conclusion

- ▶ It is possible to show that a continuous-time model of an observer based on RNNs and MLPs results in a **tunable observer structure**.
- ► The proof relies on a nonlinear extension of the KKL observer theory, leveraging properties of **contracting systems**.
- ► The use of specific nonlinear activation functions is not just a theoretical generalization; it can be practically motivated to combine desirable **behaviors** like fast convergence and noise robustness.
- ▶ Open question: What about rigorous guarantees for discrete-time **versions** of these observers?