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Approaching the observation problem

The Observation Problem

Estimate the state variables x from the measured variables y .

▶ The algorithm solving this problem is called an observer.

▶ It uses a posteriori information: the real-time measurements y(t).

▶ It also uses a priori information: a mathematical model of the
system.

ẋ = f (x), y = h(x), x ∈ Rn

Observer Principle

Measurements
{t 7→ y(t)}
Model (f , h)

Observer
Estimated State

x̂(t)



Dynamic Observer Approach

Principle

▶ Measurement history is stored in an internal, finite-dim. state (z).

▶ The state estimate x̂ is a static function of this internal state.

Workflow

y(t)
Dynamics
ż = φ(z , y)

Output Map
x̂ = γ(z)

x̂(t)

Key Question: How to design φ and γ for a good estimate?



Asking a computer science expert to solve the problem

The case of linear activation functions

The case of nonlinear activation functions

Why use nonlinear activation functions?

Conclusion



A Popular Approach in Computer Science

A Computer Science Observer Structure

y(t)
Dynamical
System
(RNN)

Output Map
(MLP)

x̂(t)

RNN (Recurrent Neural
Network)

y
z11 z12

z21 z22

z1

z2

MLP (Multilayer Perceptron)
z1

z2

x̂



A Universal Approach

▶ The structure (RNN,MLP) depends on two key elements:
▶ Activation functions, denoted σ.
▶ A set of parameters (weights, biases), denoted Ω.

▶ A general continuous-time model for the RNN dynamics is given by:

ż = W0σ(W1z +W2y + b)

The Computer Science Method: Supervised Learning

The parameters Ω are typically ”learned” from data/model in two steps:

1. Define a cost function that quantifies the estimation error (e.g.,
|x̂ − x |2).

2. Optimize the parameters Ω to minimize this cost, usually via
gradient descent.

The Control Theory Perspective

This data-driven approach often works, but it raises crucial questions:
Can we give a formal guarantee of convergence? Is the observer
tunable?
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Tunable Observers

Definition: A Tunable Observer Structure

A structure is called tunable if for any desired precision (ϵ > 0) and
convergence time (to > 0)...

Given: A compact set of initial states X , a time to , and a
threshold ϵ.

...we can prove the existence of parameters Ω that provide the following
guarantee:

Guarantee: There exist parameters Ω such that for any initial
condition in a compact set:

|x̂(t)− x(t)| ≤ ϵ, ∀t > to

The Central Question of this Talk

For which classes of activation functions σ can we formally prove this
existence guarantee?
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A particular case: Linear activation

Taking a linear activation function σ(v) = v in the RNN and choosing
specific weights:

żi = W0σ(W1zi +W2y +W3) ⇒ żi = kλizi + y , i = 1, . . . ,m

⇒ We recognize the dynamics of a KKL observer.

KKL Paradigm:

If the system is observable, by picking m sufficiently large, there exists a
map Tinv : Rm 7→ Rn such that x̂(t) = Tinv(z(t)) gives an asymptotic
observer!

▶ Local version: Shoshitaishvili (1990), Kazantzis-Kravaris (1998)

▶ Global version: Kreisselmeier-Engel (2003), Andrieu-Praly (2006),
Brivadis-Andrieu-Bernard-Serres (2022)

▶ Time-varying version: Bernard-Andrieu (2019)

▶ Discrete-time version: Tran-Bernard (2024)



KKL Observers: Step 1

Given m linear filters:

żi = kλizi + y , k > 0, λi < 0 i = 1, . . . ,m

The filter’s state z(t) converges to a function of the system’s state x(t)
(for bounded trajectories).

Theorem (VA-Praly, 2006)

There exists a C 0 map Tk : Rn 7→ Rm such
that for a constant C :

|z(t)−Tk(x(t))| ≤ Ce−k mini |λi |t |z0−Tk(x0)|

Tk(X )

z0

z(t)
Tk(x(t))

⇒ If Tk is invertible, we can recover x from z!



KKL observers: Invertibility of Tk

Step 2: Ensure Tk is invertible by choosing k large enough.

Assumption: Differential observability on X
There exists an integer m ≥ 1 such that the map Hm : Rn → Rm defined
by:

Hm : x 7→
(
h(x) Lf h(x) . . . Lm−1

f h(x)
)⊤

is Lipschitz injective on X .

Theorem (Andrieu-Praly, 2006; Andrieu, 2014)

Let X ⊂ Rn be a compact invariant set. Under the observability
assumption, there exists k∗ > 0 such that for all k ≥ k∗, the map Tk is
C 1 and Lipschitz injective.

If Tk is injective, there exists an inverse map Tinv such that
Tinv(Tk(x)) = x .



KKL observers: The final result

An (asymptotic) observer is given by:

x̂(t) = Tinv(z(t)), żi = kλizi + y , i = 1, . . . ,m

Theorem (Andrieu, 2014)

Let X ⊂ Rn be a compact invariant set. There exists k∗ > 0 such that
for all k ≥ k∗, there exists a C 1 mapping Tinv : Rm 7→ Rn and a constant
C such that

|Tinv(z(t))− x(t)| ≤ Ce−k mini |λi |t(|z0 −Tk(x0)|), ∀(z0, x0) ∈ Rm ×X .

⇒ For each (ϵ, to), there exists k∗ such that for all k ≥ k∗:

|Tinv(z(t))− x(t)| ≤ ϵ, ∀t > to , ∀(x0, z0) ∈ X × Z0

⇒ We have a tunable asymptotic observer.

Question: How do we compute Tinv?



MLP as an Approximator of Tinv

The KKL observer provides a theoretical map Tinv, but it is generally
impossible to compute analytically.

However, since Tinv is a smooth function (C 1), we can approximate it!

Universal Approximation Theorem (Cybenko, 1989)

An MLP can approximate any continuous function to any desired
precision ϵ on a compact set.

Consequence on the Total Error

The total estimation error can be split into two parts:

|x̂(t)− x(t)| ≤ |γ(z(t))− Tinv(z(t))|︸ ︷︷ ︸
Approximation Error (≤ϵ)

+ |Tinv(z(t))− x(t)|︸ ︷︷ ︸
Convergence Error

We control the first term by augmenting the MLP, and the second by
tuning the observer gain k.



Conclusion for the Linear Case: A Tunable Structure

By combining the KKL linear filters with an MLP as a universal
approximator, we obtain a complete and practical observer structure.

y(t)
Linear Filters
żi = kλizi + y

Approximated Map
x̂(t) = γ(z(t))

x̂(t)
z(t)

Main Conclusion

The combined Linear Filter + MLP architecture is a tunable observer
structure. It possesses theoretical convergence guarantees while being
practically implementable.
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Starting Point: RNNs as Contracting Systems

Recent work has provided a crucial bridge between Recurrent Neural
Networks and control theory.

Key Result (e.g., Galimberti et al. 2023)

Under certain conditions on the activation functions (σ) and weight
matrices (Ω), it is possible to guarantee that a continuous-time RNN
behaves as a contracting system.

RNN with
specific σ,Ω

=⇒ A Guaranteed
Contracting System

Our Approach

We model the RNN part of our observer as a general contracting system,
making the contraction rate tunable with a high gain parameter k.



Our Working Hypothesis: The Model

We formalize the observer dynamics as:

ż = k · g(z , y)

with k ≫ 1 (high gain) and a base dynamics g(z , y).

Key Assumptions on g(z , y)

1. Contraction Property: Ensures stability and convergence to a unique
solution.

∂g

∂z
+

(
∂g

∂z

)⊤

≤ −2Im

2. Sufficient Smoothness: The partial derivatives of g are assumed to be
bounded.

Allows analysis via Contraction Theory.



Nonlinear Case, Step 1: Convergence

Principle (from Contraction Theory)

▶ For any bounded input y(t), our contracting filter has a unique,
exponentially attractive, bounded solution: θ∗(t).

▶ Ref: Pavlov et al., 2004, Praly 2025 for its regularity

Our Definition of the Map Tk

We define our map by identifying it with this unique solution:

Tk(x(t)) := θ∗(t)

Formal Result (Andrieu, Bernard, Brivadis, Praly, 2025)

This construction yields the exponential convergence guarantee:

|z(t)− Tk(x(t))| ≤ Ce−αk mini |λi |t |z0 − Tk(x0)|.



Step 2, Part A: The Filter Rank Condition

In addition to system observability, we need a structural condition on the
filter itself to guarantee injectivity.

Assumption 2: Filter Rank Condition

The filter’s base dynamics g(z , y) must have a sufficiently ”rich”
structure.

▶ Let φ0(y) be the unique solution to g(φ0(y), y) = 0.

▶ We construct a matrix C (y) from the Jacobians of g evaluated at
this point:

C (y) =

(
. . .

[
∂g

∂z

]−i
∂g

∂y
. . .

)
i=1..m−1

▶ Condition: This matrix C (y) must be left-invertible.

Practical Implication for RNNs

This condition, while technical, is not restrictive. It can be generically
satisfied by an appropriate choice of the RNN’s weight matrices (Ω).



Step 2, Part B: The Injectivity Result

With both assumptions (System Observability & Filter Rank) now in
place, we obtain the main injectivity theorem.

Theorem (Andrieu, Bernard, Brivadis, Praly, 2025)

There exists k∗ > 0 such that for all k ≥ k∗:

✓ The map Tk becomes C 1 and Lipschitz injective.

✓ This guarantees the existence of a stable inverse map Tinv.

Final Consequence

The existence of Tinv allows us to define the observer and prove its
exponential convergence:

|x̂(t)− x(t)| ≤ Ce−αk mini |λi |t |z0 − Tk(x0)|



Conclusion for the Nonlinear Case

▶ Like the linear case, the map Tinv exists and is smooth (Lipschitz).
▶ Problem: Not analytically computable.
▶ Solution: Approximate it with a Multilayer Perceptron (MLP).

y(t)
Contractive Filter

ż = kg(z , y)
Theory

x̂ = Tinv(z)
x̂(t)

Practice
x̂ ≈ γ(z)

z(t)

Approximation

Main Result

✓ The Nonlinear Filter + MLP architecture is a tunable observer.

✓ Backed by formal guarantees (convergence & injectivity).

✓ Practically implementable.
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Linear vs. Nonlinear Activation for the RNN

For both linear and monotonic nonlinear activation functions, we get a
tunable observer structure.

So, is it better to use linear or nonlinear functions?

Consider a linear KKL observer: żi = kλizi + y . There is a well-known
trade-off:

▶ If k is large:
▶ Convergence rate is high.
▶ Sensitivity to measurement noise is high.

▶ If k is small:
▶ Convergence rate is slow.
▶ Robustness to measurement noise is better.

Question: How can we combine the advantages of both?



A nonlinear gain scheduling approach

We want an observer that is:

▶ Fast during the transient phase (when the error z − y is large).

▶ Slow/robust at steady state (when the error z − y is small).

A possible nonlinear structure for the filter that achieves this is:

ż = λ

afast(z − y)︸ ︷︷ ︸
High-gain term

+(aslow − afast) tanh(z − y)︸ ︷︷ ︸
Saturation for small errors


This defines a monotonic function σ(z , y)!

σ(z , y) = afast(z − y) + (aslow − afast) tanh(z − y)

⇒ Our theoretical results apply, and we can learn the mapping Tinv.



Simulation example: Duffing oscillator

Consider a nonlinear Duffing oscillator:{
ẋ1 = x2
ẋ2 = −0.2x1 − x31

, y = x1.

We compare three activation functions:
1. Nonlinear: ż = λ(afast(z − y) + (aslow − afast) tanh(z − y))
2. Fast Linear: ż = λafast(z − y)
3. Slow Linear: ż = λaslow(z − y)
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(a) Scenario 1: Convergence without
noise. The nonlinear observer is as fast
as the fast linear one.
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(b) Scenario 2: Estimation with
measurement noise. The nonlinear
observer is as robust as the slow linear
one.



In Conclusion

▶ It is possible to show that a continuous-time model of an observer
based on RNNs and MLPs results in a tunable observer structure.

▶ The proof relies on a nonlinear extension of the KKL observer
theory, leveraging properties of contracting systems.

▶ The use of specific nonlinear activation functions is not just a
theoretical generalization; it can be practically motivated to combine
desirable behaviors like fast convergence and noise robustness.

▶ Open question: What about rigorous guarantees for discrete-time
versions of these observers?
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