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Safe learning-based control — our setting

* We consider a discrete-time nonlinear system of the form:
Xev1 = f(xpue) + 90, ue), % € R%up € R™

where f is a known map and g is unknown.

e Given a data set
D = {(xpw, x| %" = f e up) + glxpu), i =1,..., N}
we aim at synthesizing a controller for our system such that the safety constraints hold:

x; € X,u; € UVt € N

* All results in the presentation can be adapted if the dynamics has bounded disturbances.
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Safe learning-based control — taxonomy™

* Learning the model vs. learning the controller
* Probabilistic guarantees vs. robust guarantees

* Parametric approaches vs. nonparametric approaches

* Hewing et al., Learning-Based Model Predictive Control: Toward Safe Learning in Control.
Annual Review of Control, Robotics, and Autonomous Systems, 2020.



Outline of the talk

1. Learning set-valued models from data

Makdesi, Girard & Fribourg, Data-driven models of monotone systems,
IEEE Transactions on Automatic Control, 2023.

2. Safe learning-based nonlinear model predictive control

Makdesi, Girard & Fribourg, Safe learning-based model predictive control using the compatible models approach.
European Journal of Control, 2023.

3. A path towards online learning

Makdesi, Girard, & Fribourg, Online learning for safe model predictive control with the compatible models approach.
In 8th IFAC Conference on Analysis and Design of Hybrid Systems, 2024.



Learning set-valued models — formulation

Assume the unknown map g satisfies the following property*

Vi<x',Vusu ,Alx'—x)+ B —u) < gx’,u') —glx,u)

where A and B are known matrices.

Given the data set
D = {(x,up x| x = fleu) + g, u),i =1,...,N}
Compute the “tightest” set-valued map G: R*XR"™ =3 R™ such that
Vx € R",Vu € R™, g(x,u) € G(x,u)

* True if g is Lipschitz or if g has lower bounded derivatives 5



Reformulation using monotone maps (1)

* Consider the map h: R"XR™ — R™" given by
h(x,u) = g(x,u) — Ax — Bu

* his unknown and monotone
Vx < x,Vvu<u,h(x,u) < h(',u')

* Consider the modified dataset D' = {(x;, u;, y;)|i = 1, ..., N} where

y; = h(x;,u) = x;" — f(x;, uy) — Ax; — By,



Reformulation using motonone maps (2)

« Amap h : R®XR™ — R" is consistent with D’ (i.e. h € Cp) if h is monotone and

* Aset-valued map H: R*XR™ = R" is simulating D’ (i.e. H € Sp) if for all h € Cp,

Vx € R®, Vu € R™ h(x,u) € H(x,u)

e Itis minimal if forall H € S
Vx € R*, Vu € R™ H(x,u) € H(x,u)



Computation of the minimal simulating map
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Computation of the minimal simulating map
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Computation of the minimal simulating map
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Minimal simulating map — theorem

For a data set D’, there exists a unique minimal simulating map H: R*XR™ 3 R".

It satisfies the following properties:

1. Itisinner-semi continuous

2. Forallx € R™,u € R™ H(x,u) is an interval of R"

3. There exist interval partitions (Xq)qEQ and (Up)pEP of R™ and R™, and a collection

of intervals (Yq'p)qEQ,pEP such that

H(x,u) = Nygp)| xeci(xy)uectuy)} Ya
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Effective implementation

Computation of the minimal simulating map:
» Computational complexity: O(Nx log(]|Q|x|P|) + |Q|X|P])
e With |Q|X|P| = (N + 1)™™, we get O(N™*™), the complexity is polynomial in the

size of the data set.
Fix the partitions (Xq)qEQ and (Up)pEP a priori:

e Still “safe” but introduces some conservatism: H minimal in the class of simulating
maps piecewise constant on these partitions.

* The complexity becomes linear in the size of the data set
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Outline of the talk

1. Learning set-valued models from data

Makdesi, Girard & Fribourg, Data-driven models of monotone systems,
IEEE Transactions on Automatic Control, 2023.

2. Safe learning-based nonlinear model predictive control

Makdesi, Girard & Fribourg, Safe learning-based model predictive control using the compatible models approach.
European Journal of Control, 2023.

3. A path towards online learning

Makdesi, Girard, & Fribourg, Online learning for safe model predictive control with the compatible models approach.
In 8th IFAC Conference on Analysis and Design of Hybrid Systems, 2024.

14



Data-driven safety filter

* We consider the data-driven difference inclusion given by:
Xe1 € f (e ue) + H(xp, up), xp € R™, up € R™

where f(x,u) = f(x,u) + Ax + Bu.

* Given state and input safety constraints X and U, we want to compute a robust
controlled invariant set Xg € X such that

Vx € X;,3u € [U,f(x,u) + H(x,u) € X,

* Then a safety filter is given by the set-valued map C;: X, 3 U
C,(x) = {u e U| f(x,u) + H(x,u) S Xs}
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Symbolic control approach

A robust controlled invariant set can be computed using the symbolic control approach*:

Abstraction Finite-State

Difference Inclusion . .
Difference Inclusion

Discrete synthesis

Concretization Finite-State

R ntrolled Invarian i
obust Controlled Invariant Robust Controlled Invariant

*Girard, Meyer & Saoud, Approches symboliques pour le contrble des systemes non linéaires.
Techniques de I'Ingénieur, 2024. 16



Example — adaptive cruise control

Consider two vehicles (leader and follower):

25 <

* Relative distance d

20 4

* Follower and leader velocity v; and v,
e Unknown dynamics g 29

10 4

-32

vf 0 -50 d

Robust controlled invariant set
computed from 10° data points.
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Safe learning-based MPC — the compatible models approach

We consider the following MPC:

r—1
minimize 2 Ue Cerper uiege) + b (e
Uolts s Ur—1]t k=0
Ukt € U, Xg41e € X, k=0,..,r—1 constraints
Ut € Cs(xo|t) data-driven safety filter
Xkt1)t = f(xk|t» uklt) + E(xk|t: uk|t) data-driven prediction

where i: R"xR™ — R" is a continuous selection* of H:

Vx € R,V ue R™ h(x,u) € H(x,u)

* A continuous selection of H exists by Michael selection theorem. 18



The compatible models approach — theorem

Consider the unknown discrete-time nonlinear system:
X1 = (O ue) + g(xe, ue), xe € R% up € R™

interconnected with the safe learning-based MPC with

x0|t = X¢, U = u0|t, vVt € N

Then, the optimization problem is recursively feasible and
xr €EX,u € U,vt €N
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Effective construction of the continuous selection

* Select values at the vertices (x,, Uy,) ey Of the partition (XqXUp)qEQ,pep
YV € V, ﬁ(xv; uv) € H(xv: uv)

* Then interpolate in each cell of the partition by a multi-affine function (multi-variate
polynomial of degree 1 in each variable) :

V(x,u) € Xg XU,

h(x,u) = ag + a;xq + ayx, + azuq + arx1x, + asxquq + agx,uUy + A7x1XUq + -+

* From properties of multi-affine maps, h is a continuous selection of H.
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Example — bicycle model with disturbances

3 states, 2 inputs

Start

Goal

Simulating map
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Example — bicycle model with disturbances

Robust control invariant set
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Example — bicycle model with disturbances

0 0.5 1 1.5 2 2.5 3 3.5 Z 4.5 S

Trajectory using safe learning-based MPC .
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Online learning — model update

Consider two data sets D and D'and the associated minimal simulating maps
Hp and Hpr, then

Hp pr(x,u) = Hp(x,u) N Hpr(x,u), Vx € R",Vu € R™

e The minimal simulating map can be updated from newly collected data D'without
reprocessing older data D.

* Afterwards, the continuous selection can be updated by adapting the value at the
vertices of the partition to the new constraints.
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Online learning — safety filter update

Update the robust controlled invariant set:

e Check if some states outside the old invariant can be controlled to the reach the
invariant (computationally cheap, conservative)

* Synthesize a new robust controlled invariant set from scratch using the updated model
(computationally expensive, no conservatism)

The safety filter is easily updated given the new robust controlled invariant set.
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Conclusion and outlook

A set-valued approach to safe-learning:

e Results grounded in theory of monotone maps

* Computational approach based on combination of symbolic control and MPC
* Formal safety guarantees

Future research directions:

* Improvement of the MPC implementation (warm start, non-smooth constraints)
* Efficient online learning (active learning, dual control...)

» Safe learning of time-varying systems (handling outdated data)

* Physics-informed learning (e.g. unknown map is solution of a PDE)
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