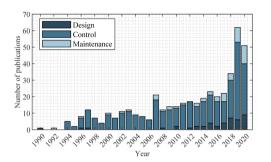


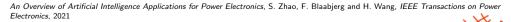
IA pour le design en électronique de puissance

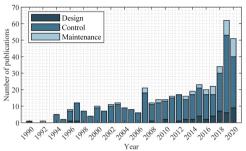
Journées de clôture PowerAlps

Pauline Kergus

10 Septembre 2025

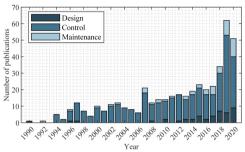






Design

- Obj = Gain de temps
- Modèles de substitution
- Méta-heuristiques



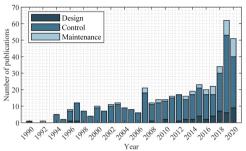
Design

► Obj = Gain de temps

- Modèles de substitution
- Méta-heuristiques

Commande

- ▶ Obj = Simplifier le design
- Logique floue
- Réseaux de neurones, RL



Design

- ▶ Obj = Gain de temps
- Modèles de substitution
- Méta-heuristiques

Commande

- ► Obj = Simplifier le design
- Logique floue
- Réseaux de neurones, RL

Maintenance

- Obj = Modèles sur mesure
- Modèles (régression)
- Décision (classification)

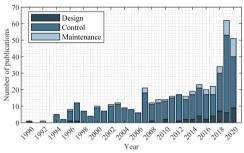


TABLE VI
REQUIREMENTS OF AI FOR EXEMPLARY APPLICATIONS IN DESIGN,
CONTROL, AND MAINTENANCE

Requirements	Heatsink design (Design)	Intelligent controller (Control)	RUL prediction (Maintenance)
Computation Effort	+++	++	++
Algorithm Speed	+	+++	++
Accuracy	++	+++	+++
Dataset requirement	+	+	+++
Interpretability	+	+++	+++

High: +++, moderate: ++, low: +.

Design

► Obj = Gain de temps

► Modèles de substitution

Méta-heuristiques

Commande

- ▶ Obj = Simplifier le design
 - Logique floue
- Réseaux de neurones, RL

Maintenance

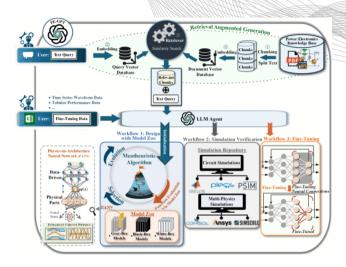
- Obj = Modèles sur mesure
- Modèles (régression)
- Décision (classification)

Focus sur PE-GPT

Design automatisé de convertisseurs en 2 niveaux :

- → Hétérogénité des données et des tâches à effectuer
- ▶ Un LLM (GPT4) + RAG pour la formalisation du cahier des charges
- Des workflows complémentaires
 - Design
 - Simulation
 - Fine tuning à partir de données

PE-GPT: A New Paradigm for Power Electronics Design, F. Lin et al., IEEE Transactions on Industrial Electronics, April 2025



Vers un design automatisé

► Calcul analytique

Avantages:

- Modularité / variété d'architectures
- Simulation incluse

Limitations:

- ► En régime permanent et en BO
- ► Temps de calcul

Vers un design automatisé

Calcul analytique

Avantages:

- Modularité / variété d'architectures
- Simulation incluse

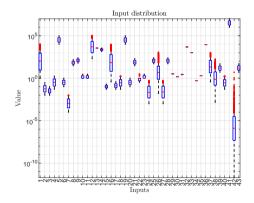
Limitations:

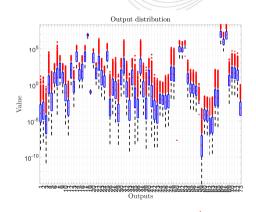
- En régime permanent et en BO
- Temps de calcul

Modèle de design

Construction d'une base de donnée

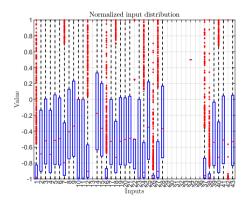
- ► Génération de 1000 designs aléatoires
 - ▶ 43 entrées : spécifications + design drivers (DC-DC uniquement)
 - > 73 sorties : valeurs des paramètres correspondants récupérés sur PLECS

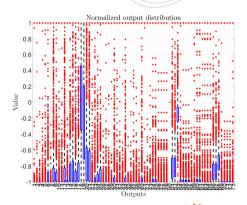




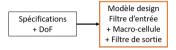
Construction d'une base de donnée

- ► Génération de 1000 designs aléatoires
 - ▶ 43 entrées : spécifications + design drivers (DC-DC uniquement)
 - ▶ 73 sorties : valeurs des paramètres correspondants récupérés sur PLECS



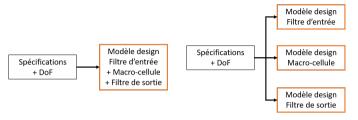


Structure du modèle de design



► Pas de modularité

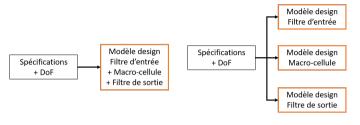
Structure du modèle de design

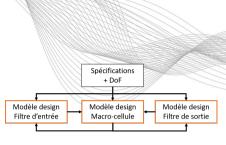


► Pas de modularité

- Modularité préservée
- Pas de connexions entre les différents éléments

Structure du modèle de design





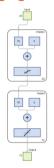
► Pas de modularité

- Modularité préservée
- Pas de connexions entre les différents éléments

- Réseaux de neurones interconnectés : boucle algébrique très complexe!!
- Ou version itérative (problèmes de convergence et de temps de calcul)

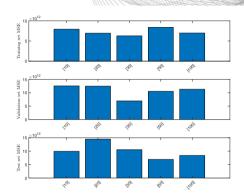
Premiers résultats

Modèle de design global



Une couche (hidden layer):

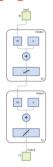
- ► Tansig (fct d'activation)
- ▶ 10, 20, 30, 50, 100 neurones



$$\mathsf{MSE} = rac{1}{Nn_y} \sum_{i=1}^{N} \sum_{j=1}^{n_y} \left(y_{ij} - \hat{y}_{ij} \right)^2$$

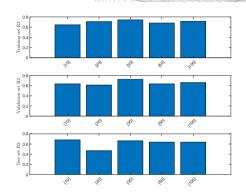
Premiers résultats

Modèle de design global



Une couche (hidden layer):

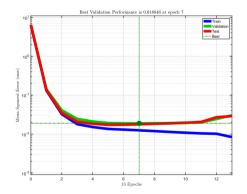
- ► Tansig (fct d'activation)
- ▶ 10, 20, 30, 50, 100 neurones



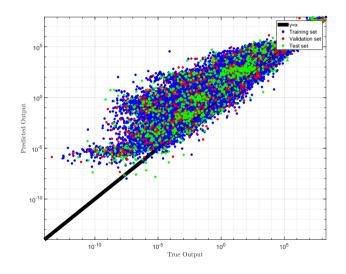
$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \sum_{j=1}^{n_{y}} (y_{ij} - \hat{y}_{ij})^{2}}{\sum_{i=1}^{N} \sum_{j=1}^{n_{y}} (y_{ij} - \bar{y}_{j})^{2}}$$

Entraînement du modèle global de design

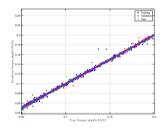
- ► Focus sur le réseau 1 couche 30 neurones
- ► Arrêt au bout de 13 epochs (9 minutes)

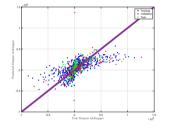


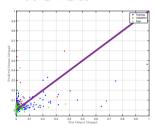
Performances du modèle global de design



Performances du modèle global de design







Et avec un modèle plus complexe?

Co	ouches	1 layer				2 layers			
Neurones		10	20	30	50	100	10	20	30
MSE	train	7.94e12	6.95e12	6.29e12	8.40e12	6.98e12	1.56e13	7.37e12	8.19e12
	val	1.26e13	1.25e13	6.95e12	1.05e13	1.13e13	1.06e13	1.14e13	1.10e13
	test	9.94e12	1.44e13	1.05e13	6.92e12	8.39e12	1.66e13	5.63e12	8.22e12
	train	0.65	0.71	0.74	0.68	0.71	0.41	0.70	0.67
R2	val	0.64	0.61	0.72	0.63	0.66	0.47	0.67	0.63
	test	0.68	0.47	0.66	0.64	0.64	0.39	0.72	0.64

Et avec un modèle plus complexe?

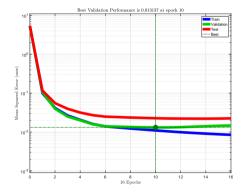
Co	ouches	1 layer				2 layers			
Ne	Neurones		20	30	50	100	10	20	30
MSE	train	7.94e12	6.95e12	6.29e12	8.40e12	6.98e12	1.56e13	7.37e12	8.19e12
	val	1.26e13	1.25e13	6.95e12	1.05e13	1.13e13	1.06e13	1.14e13	1.10e13
	test	9.94e12	1.44e13	1.05e13	6.92e12	8.39e12	1.66e13	5.63e12	8.22e12
	train	0.65	0.71	0.74	0.68	0.71	0.41	0.70	0.67
R2	val	0.64	0.61	0.72	0.63	0.66	0.47	0.67	0.63
	test	0.68	0.47	0.66	0.64	0.64	0.39	0.72	0.64

$$\mathsf{MSE} = \frac{1}{Nn_y} \sum_{i=1}^{N} \sum_{j=1}^{n_y} \left(y_{ij} - \hat{y}_{ij} \right)^2$$

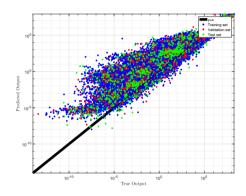
- Entraînement sur les entrées-sorties normalisées
- Performances calculées sur les prédictions dénormalisées!

Entraînement du modèle global de design

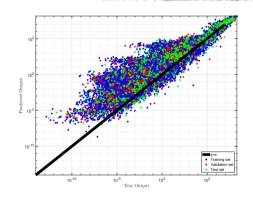
- ► Focus sur le réseau 2 couches de 30 neurones
- ► Arrêt au bout de 16 epochs (10 minutes)



Performances du modèle global de design



1 couche à 30 neurones



2 couches à 20 neurones

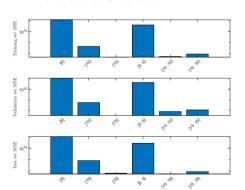
Vers une modélisation modulaire

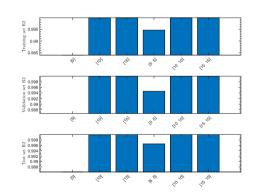
Exemple de la macro-cellule

Spécifications + DoF

Modèle design | Modèle design | Modèle design | Filtre d'entrée | Macro-cellule | Filtre de sortie

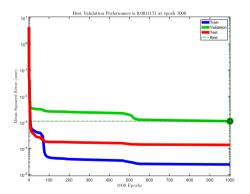
▶ 12 entrées et 8 sorties





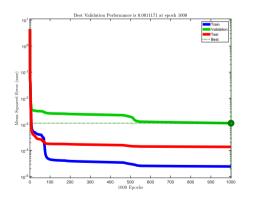
Entraînement du modèle de design de la macro-cellule

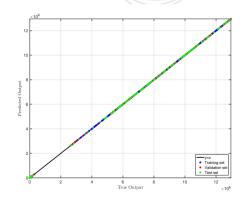
- ► Focus sur le réseau 1 couche 15 neurones
- ► Stop à 1000 epochs après 45,7 secondes seconds



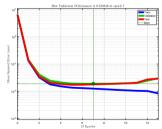
Entraînement du modèle de design de la macro-cellule

- ▶ Focus sur le réseau 1 couche 15 neurones
- ► Stop à 1000 epochs après 45,7 secondes seconds





- Optimisation des hyperparamètres
- ► Tester la capacité de généralisation au delà de la base de données
- Autres structures à explorer pour le modèle de design
 - Autres types de de réseaux de neurones ou utilisation d'arbres de régression (gradient boosting)
 - Explorer la voie des 3 modèles indépendants
 - Intégrer de la physique



| Dest Vollstatus Polificanama is 10001171 at epots 1000

Entraînement du modèle de design global

Entraînement du modèle de design de macro-cellule Laplace

▶ Modèle à intégrer dans une boucle d'optimisation (méta-heuristique)

- Modèle à intégrer dans une boucle d'optimisation (méta-heuristique)
- Utiliser des méthodes de quantification d'incertitudes

- Modèle à intégrer dans une boucle d'optimisation (méta-heuristique)
- ▶ Utiliser des méthodes de quantification d'incertitudes
- Inclure le type de commande en entrée et ses paramètres en sortie

- Modèle à intégrer dans une boucle d'optimisation (méta-heuristique)
- Utiliser des méthodes de quantification d'incertitudes
- Inclure le type de commande en entrée et ses paramètres en sortie
- Est ce que l'apprentissage permet vraiment d'aller plus vite?
 - Formaliser et utiliser la résolution analytique sans PLECS
 - Interpolation pour le modèle de design

- ▶ Modèle à intégrer dans une boucle d'optimisation (méta-heuristique)
- Utiliser des méthodes de quantification d'incertitudes
- ▶ Inclure le type de commande en entrée et ses paramètres en sortie
- Est ce que l'apprentissage permet vraiment d'aller plus vite?
 - Formaliser et utiliser la résolution analytique sans PLECS
 - Interpolation pour le modèle de design

IAPUCA : IA pour l'électronique de PUissance et la Commande Associée

Groupe de travail: T. Meynard, G. Fontes, P. Kergus, R. Ruelland, M. Fadel, G. LeGoff, A. Picot, J. Regnier, A. Llor, G. Gateau, F. Messine, D. Bonnafous, E. Monmasson

